【題目】如圖,在四棱錐中,側面底面,底面為矩形,
.
(1)求證: ;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2) .
【解析】分析:(1)因為側面底面 , 平面平面,由底面為矩形,可得。平面。用面面垂直的性質定理可知平面。由線面垂直的性質定理可得。(2)過點不好作平面的垂線,故求點到平面的距離。利用三棱錐的體積轉化來求,即。 由(1)可知邊 上的高即為三棱錐的底面的高,根據(jù)題的已知條件可求高及三棱錐的體積。由(1)知,可求三角形PAD的面積。利用即可求點到平面的距離。記直線與平面所成角為,則由可求得直線與平面所成角的正弦值為.
詳解:(1)證明: 側面底面 , 平面
又平面平面,且
平面
(2)由題易知在上的高為,所以
由(1)知平面 ,所以
由(1)知,所以
記點到平面的距離為
則
因為
所以,得記直線與平面所成角為
則
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意的實數(shù)都有:,且當時,有.
(1)求.
(2)求證:在上為增函數(shù).
(3)若,且關于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產不同規(guī)格的一種產品,根據(jù)檢測標準,其合格產品的質量與尺寸之間滿足關系式(為大于0的常數(shù)),現(xiàn)隨機抽取6件合格產品,測得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
(1)求關于的回歸方程;(提示:與有線性相關關系)
(2)按照某項指標測定,當產品質量與尺寸的比在區(qū)間內時為優(yōu)等品,現(xiàn)從抽取的6件合格產品再任選3件,求恰好取得兩件優(yōu)等品的概率.
參考數(shù)據(jù)及公式:
,,,
對于樣本(),其回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心均在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1、F2 , 這兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2的取值范圍為( )
A.
B.
C.(2,+∞)
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線:上異于原點的動點, 是平面上兩個定點.當的縱坐標為時,點到拋物線焦點的距離為.
(1)求拋物線的方程;
(2)直線交于另一點,直線交于另一點,記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)寫出下列兩組誘導公式:
①關于與的誘導公式;
②關于與的誘導公式.
(2)從上述①②兩組誘導公式中任選一組,用任意角的三角函數(shù)定義給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學、外語三門統(tǒng)一高考成績和學生自主選擇的普通高中學業(yè)水平等級性考試科目的成績共同構成.省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調查,調查結果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調查結果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計 | |
城鎮(zhèn)居民 | |||
農村居民 | |||
合計 |
(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com