已知拋物線方程為,直線的方程為,在拋物線上有一動(dòng)點(diǎn)軸的距離為,到直線的距離為,則的最小值為              

 

【答案】

【解析】

試題分析:拋物線焦點(diǎn),準(zhǔn)線,點(diǎn)P到準(zhǔn)線的距離為,所以點(diǎn)P到焦點(diǎn)的距離為,由圖像可知焦點(diǎn)到直線的距離為,即的最小值為,的最小值為

考點(diǎn):拋物線定義性質(zhì)及數(shù)形結(jié)合法

點(diǎn)評(píng):本題由拋物線定義(拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離)將點(diǎn)P到y(tǒng)軸的距離轉(zhuǎn)化為到焦點(diǎn)的距離,這一點(diǎn)是求解本題的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等
10
時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省教育考試院高考測(cè)試樣卷(理) 題型:解答題

   已知拋物線C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點(diǎn)P, 使得過點(diǎn)P的直

線交C于另一點(diǎn)Q, 滿足PF⊥QF, 且PQ與C

在點(diǎn)P處的切線垂直? 若存在, 求出點(diǎn)P的坐標(biāo);

若不存在, 請(qǐng)說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為數(shù)學(xué)公式,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等數(shù)學(xué)公式時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)K(-1,0)的直l與C相交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D。 (1)證明:點(diǎn)F在直線BD上;
(2)設(shè)=,求△BDK的內(nèi)切圓M的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺(tái)州市天臺(tái)縣平橋中學(xué)高二(上)12月診斷數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等時(shí),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案