17.某校早上7:40開始上課,假設該校學生小張與小王在早上7:10~7:30之間到校,且每人在該時間段的任何時刻到校是等可能的,則小張比小王至少早5分鐘到校的概率為$\frac{9}{32}$.(用數(shù)字作答)

分析 設小張到校的時間為x,小王到校的時間為y.(x,y)可以看成平面中的點試驗的全部結果所構成的區(qū)域為Ω={(x,y|30≤x≤50,30≤y≤50}是一個矩形區(qū)域,則小張比小王至少早5分鐘到校事件A={(x,y)|y-x≥5}作出符合題意的圖象,由圖根據(jù)幾何概率模型的規(guī)則求解即可.

解答 解:設小張到校的時間為x,小王到校的時間為y.(x,y)可以看成平面中的點試驗的全部結果所構成的區(qū)域為Ω={(x,y|30≤x≤50,30≤y≤50}是一個矩形區(qū)域,對應的面積S=20×20=400,
則小張比小王至少早5分鐘到校事件A={x|y-x≥5}作出符合題意的圖象,
則符合題意的區(qū)域為△ABC,
聯(lián)立$\left\{\begin{array}{l}{y-x=5}\\{y=50}\end{array}\right.$得C(45,50),聯(lián)立$\left\{\begin{array}{l}{y-x=5}\\{x=30}\end{array}\right.$得B(30,35),
則S△ABC=$\frac{1}{2}$×15×15,
由幾何概率模型可知小張比小王至少早5分鐘到校的概率為$\frac{\frac{1}{2}×15×15}{20×20}$=$\frac{9}{32}$,
故答案為:$\frac{9}{32}$.

點評 本題考查幾何概率模型與模擬方法估計概率,求解的關鍵是掌握兩種求概率的方法的定義及規(guī)則,求出對應區(qū)域的面積是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.點A(6,0)與點B(-2,0)的距離是(  )
A.6B.8C.$2\sqrt{10}$D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設復數(shù)$z=\frac{2i}{(1+i)}$,則$\overline z$的虛部是(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+bx+c,x≤0}\\{-2,x>0}\end{array}}\right.$,若f(-4)=f(0),f(-2)=f(2),則函數(shù)y=f(x)與y=-x的交點的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)y=x2lga+2x+4lga有最小值-3,則a=a=10${\;}^{\frac{1}{4}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)y=3sin(x-$\frac{π}{5}$)的圖象為C,把C上所有的點縱坐標不變橫坐標變?yōu)樵瓉淼?倍,得到的函數(shù)解析式為y=3sin($\frac{1}{2}$x-$\frac{π}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}中,a3+a8=12,則S10=60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
(I)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\stackrel{∧}{y}$-b$\overline{x}$;
(II)預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
(Ⅲ)銷量與單價仍然服從(I)中的關系,選取表格前三組數(shù)據(jù),計算殘差平方和.
(殘差平方和計算公式$\sum_{i=1}^{n}$(yi-$\stackrel{∧}{y}$i2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若函數(shù)f(x)=4x2-kx-8在[5,8]上是單調減函數(shù),則k的取值范圍是[64,+∞).

查看答案和解析>>

同步練習冊答案