求下列各曲線的標準方程
(Ⅰ)實軸長為12,離心率為,焦點在x軸上的橢圓;
(Ⅱ)拋物線的焦點是雙曲線的左頂點.
(1) (2)

試題分析:解:(Ⅰ)設橢圓的標準方程為  1分
由已知,,  3分
  5分
所以橢圓的標準方程為.  6分
(Ⅱ)由已知,雙曲線的標準方程為,其左頂點為  7分
設拋物線的標準方程為, 其焦點坐標為,  9分
  即  所以拋物線的標準方程為.  12分
點評:對于橢圓的方程的求解主要是求解參數(shù)a,b的值,結合已知中的橢圓的性質得到其關系式,同時利用a,b,c的平方關系來得到結論,對于拋物線的求解,只有一個參數(shù)p,因此只要一個點的坐標即可,或者一個性質都可以解決,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分) 如圖,已知橢圓的兩個焦點分別為,斜率為k的直線l過左焦點F1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF1的中點,若,求橢圓離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線上有一點P到左準線的距離為,則P到右焦點的距離為        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的右焦點是F, 過點F且傾角為600的直線與雙曲線的右支有且只有一個交點,則此雙曲線的離心率的范圍是(  )
A.B.(1,2)C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓、兩點.

(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的兩個焦點為為坐標原點,點在雙曲線上,且,若、成等比數(shù)列,則等于
A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩定點,,曲線上的點P到的距離之差的絕對值是6,則該曲線的方程為(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案