【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點.
(1)求異面直線、所成角的余弦值;
(2)求二面角的平面角的余弦值.
【答案】(1);(2).
【解析】
試題分析:建立空間直角坐標(biāo)系,由題意寫出相關(guān)點的坐標(biāo);(1)求出直線所在的方向向量,直接計算即可;(2)求出平面與平面的法向量,計算即可.
試題解析: (1)如圖所示,以C為原點,CA、CB、CC1為坐標(biāo)軸,建立空間直角坐標(biāo)系C-xyz
則C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1).
所以,,
所以.即異面直線DC1與B1C所成角的余弦值為.
(2)因為,,,所以,,所以為平面ACC1A1的一個法向量。
因為,,設(shè)平面B1DC1的一個法向量為n,n(x,y,z).
由得令x=1,則y=2,z=-2,n=(1,2,-2).
所以所以二面角B1―DC―C1的余弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.
(1)求的取值范圍;
(2)設(shè)兩個極值點分別為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},則a的值為( )
A. 0 B. 1
C. 2 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣1,1)上的奇函數(shù)f(x),在x∈(﹣1,0)時,f(x)=2x+2﹣x.
(1)求f(x)在(﹣1,1)上的表達式;
(2)用定義證明f(x)在(﹣1,0)上是減函數(shù);
(3)若對于x∈(0,1)上的每一個值,不等式m2xf(x)<4x﹣1恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用隨機模擬方法求得某幾何概型的概率為m,其實際概率的大小為n,則( )
A. m>n B. m<n
C. m=n D. m是n的近似值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個籃球較強的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強的班級籃球隊員人數(shù)如下表:
班級 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人數(shù) | 12 | 6 | 9 | 9 |
(1)現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應(yīng)分別從這四個班抽出的隊員人數(shù);
(2)該中學(xué)籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識增強環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試.
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識與專業(yè)有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(2)為參加上級舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為,得80分以上的概率為,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機變量X表示甲班通過預(yù)選的人數(shù),
求X的分布列及期望E(X).
附: , n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010[ | 0.005 |
k0 | 2.706 | 3.84 | 5.02 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com