精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列{an}的前n項和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

【答案】A
【解析】解:在等差數列中,s10 , s20﹣s10 , s30﹣s20成等差數列
=x+x2| =3+9=12,
S20=17,
∴2(17﹣12)=12+s30﹣17
∴s30=15
故選A.
【考點精析】根據題目的已知條件,利用定積分的概念和等差數列的性質的相關知識可以得到問題的答案,需要掌握定積分的值是一個常數,可正、可負、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限;在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ex , g(x)=kx+1.
(I)求函數y=f(x)﹣(x+1)的最小值;
(II)證明:當k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中,a,b,c為角A,B,C所對的邊,且

(1)求cosA的值;

(2)若△ABC的面積為,并且邊AB上的中線CM的長為,求b,c的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,DE是⊙O的直徑,過⊙O上的點C作直線AB,交ED的延長線于點B,且OA=OB,CA=CB,連結EC,CD.

(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017101日,為慶祝中華人民共和國成立68周年,來自北京大學和清華大學的6名大學生志愿者被隨機平均分配到天安門廣場運送礦泉水、打掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有1名北京大學志愿者的概率是.

(1)求打掃衛(wèi)生崗位恰好有北京大學、清華大學志愿者各1名的概率;

(2)設隨機變量ξ為在維持秩序崗位服務的北京大學志愿者的人數,求ξ的分布列和均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若(2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:

(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;

(2)(a0+a2+a4)2-(a1+a2+a3)2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學志愿者協會有6名男同學,4名女同學.在這10名同學中,3名同學來自數學學院,其余7名同學來自物理、化學等其他互不相同的七個學院.現從這10名同學中隨機選取3名同學,到希望小學進行支教活動(每位同學被選到的可能性相同).

1)求選出的3名同學是來自互不相同學院的概率;

2)設為選出的3名同學中女同學的人數,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知(a>0,且a≠1).

(1)討論f(x)的奇偶性;

(2)a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

同步練習冊答案