【題目】設函數f(x)=ex , g(x)=kx+1.
(I)求函數y=f(x)﹣(x+1)的最小值;
(II)證明:當k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數k的取值范圍.
【答案】解:(I)由已知y=ex﹣x﹣1,∴y'=ex﹣1,
設y'>0得x>0,設y'<0得x<0,
∴函數y=ex﹣x﹣1在(﹣∞,0)上遞減,在(0,+∞)上遞增,
則當x=0時,y有最小值為0
(II)證明:設h(x)=f(x)﹣g(x),即h(x)=ex﹣kx﹣1,
∴h'(x)=ex﹣k,設h'(x)=0得x=lnk(k>1),
∵k>1,∴當x∈(0,lnk)時,h'(x)<0,
即h(x)在(0,lnk)上單調遞減,
而h(0)=0,且h(x)是R上的連續(xù)函數,
∴h(x)<0在(0,lnk)上恒成立,
即f(x)<g(x)在(0,lnk)上恒成立,
∴取0<x0≤lnk,則對任意x∈(0,x0)都有f(x)<g(x)
(III)①當k>1時,由(II)知存在x0>0,
使對于任意x∈(0,x0)都有f(x)<g(x),
則不等式|f(x)﹣g(x)|>x
等價于g(x)﹣f(x)>x,即(k﹣1)x+1﹣ex>0,
設t(x)=(k﹣1)x+1﹣ex , t'(x)=k﹣1﹣ex ,
設t'(x)>0得x<ln(k﹣1),設t'(x)<0得x>ln(k﹣1),
若1<k≤2,ln(k﹣1)≤0,
∵(0,x0)(ln(k﹣1),+∞),
∴t(x)在(0,x0)上遞減,注意到t(0)=0,
∴對任意x∈(0,x0),t(x)<0,與題設不符,
若k>2,ln(k﹣1)>0,(0,ln(k﹣1))(﹣∞,ln(k﹣1)),
∴t(x)在(0,ln(k﹣1))上遞增,
∵t(0)=0,∴對任意x∈(0,ln(k﹣1)),t(x)>0符合題設,
此時取0<m≤min{x0 , ln(k﹣1)},
可得對任意x∈(0,m)都有|f(x)﹣g(x)|>x
②當k≤1時,由(I)知ex﹣(x+1)≥0,
f(x)﹣g(x)=ex﹣kx﹣1=ex﹣(x+1)+(1﹣k)x≥(1﹣k)x≥0,
對任意x>0都成立,∴|f(x)﹣g(x)|>x等價于ex﹣(k+1)x﹣1>0,
設φ(x)=ex﹣(k+1)x﹣1,
則φ'(x)=ex﹣(k+1),
若k≤0,即有k+1≤1,∴對任意正數x,φ'(x)>0,
∴φ(x)在(0,+∞)上遞增,
∵φ(0)=0,∴φ(x)>0在(0,+∞)上恒成立,
此時,m可取任意正數都符合題設,
若0<k≤1,設φ'(x)>0得x>ln(k+1)>0,
設φ'(x)<0得x<ln(k+1),
∴φ(x)在(0,ln(k+1))上遞減,注意到φ(0)=0,
∴對任意x∈(0,ln(k+1)),φ(x)<0,不符合題設
綜上所述,滿足題設條件的k的取值范圍為{k|k≤0或k>2}
【解析】(Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間,從而求出函數的最小值即可;(Ⅱ)設h(x)=f(x)﹣g(x),求出函數的導數,得到函數的單調性,從而證出結論;(Ⅲ)通過討論k的范圍,①當k>1時,得到(k﹣1)x+1﹣ex>0,設t(x)=(k﹣1)x+1﹣ex , 根據函數的單調性求出k的范圍即可;②當k≤1時,等價于ex﹣(k+1)x﹣1>0,設φ(x)=ex﹣(k+1)x﹣1,根據函數的單調性求出k的范圍即可.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的最大(小)值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減;求函數在上的最大值與最小值的步驟:(1)求函數在內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經濟學院的學生參加,各學院邀請的學生數如下表所示:
學院 | 機械工程學院 | 海洋學院 | 醫(yī)學院 | 經濟學院 |
人數 | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數為ξ,求隨機變量ξ的概率分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)在R上存在導數f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數a的取值范圍為( )
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設0<a<1,已知函數f(x)= ,若對任意b∈(0, ),函數g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調查,調查結果如下表:
本數 | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數為 X,求隨機變量 X的分布列和數學期望;
(III)試判斷男學生閱讀名著本數的方差 與女學生閱讀名著本數的方差 的大。ㄖ恍鑼懗鼋Y論).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,曲線在點處的切線方程為.
(1)求,的值;
(2)若,求函數的單調區(qū)間;
(3)設函數,且在區(qū)間內為減函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,函數f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com