如圖,梯形ABCD中,CD//AB,,EAB的中點(diǎn),將△ADE沿DE折起,使點(diǎn)A折到點(diǎn)P的位置,且二面角的大小為1200
(I)求證:;
(II)求直線PD與平面BCDE所成角的大;
(III)求點(diǎn)D到平面PBC的距離.
I)證明見解析 (II)直線PD與平面BCDE所成角是
(III)
(I)連結(jié)ACDEF,連結(jié)PF
,
,,

CA平分.                                   
是正三角形,
,即PFDECFDE,
DE⊥面PCF,∴DEPC.                               
(II)過PO,連結(jié)OD,設(shè)AD = DC = CB = a,則AB = 2a,
DE⊥面PCF,∴DEPO,
PO⊥面BCDE,
∴∠PDO就是直線PD與平面BCDE所成的角.                 
∵∠PFC是二面角P-DE-C的平面角,
∴∠PFO= 60°,在RT△POD中,,
直線PD與平面BCDE所成角是

(III)∵DEBCDE在平面PBC外,,點(diǎn)到面的距離即為點(diǎn)F到面PBC的距離,過點(diǎn)FFGPC,垂足為G
DE⊥面PCF,

,
FG的長即為點(diǎn)F到面PBC的距離.                        
在菱形ADCE中,,
,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長為的正方體中,為棱的中點(diǎn).
(Ⅰ)求證:平面;   (Ⅱ)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,正方體的棱長為2,EAB的中點(diǎn).(Ⅰ)求證:(Ⅱ)求異面直線BD1CE所成角的余弦值;(Ⅲ)求點(diǎn)B到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱錐P—ABC中,△PAC是邊長為4的等邊三角形,△ABC為等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分別為AB、PB的中點(diǎn).
(1)求證:AC⊥PD;
(2)求二面角E—AC—B的正切值;


 
(3)求三棱錐P—CDE與三棱錐P—ABC的體積之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直四棱柱中,底面ABCD為等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分別是棱AD、AA、AB的中點(diǎn)。               
(Ⅰ)證明:直線∥平面;          
(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,,,底面, ,直線與底面角,點(diǎn)分別是的中點(diǎn).
(1)求二面角的大;
(2)當(dāng)的值為多少時,為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等邊ABC的A∈平面α,B、C到面α的距離分別為2a、a,且AB=BC=AC=b.
(1)求面ABC與α所成二面角的大小;
(2)若B、C到α的距離分別為3a、a呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB∶AD=∶1,F(xiàn)是AB的中點(diǎn).
 。1)求VC與平面ABCD所成的角;
 。2)求二面角V-FC-B的度數(shù);
  (3)當(dāng)V到平面ABCD的距離是3時,求B到平面VFC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;
(2)求二面角A—BNC的余弦值.


 

 

查看答案和解析>>

同步練習(xí)冊答案