19.已知A={x|x≤1或x>3},B={x|x>2},(∁RA)∩B={x|2<x≤3}.

分析 由已知求出(∁RA,然后利用補集運算得答案.

解答 解:∵A={x|x≤1或x>3},∴∁RA={x|1<x≤3},
又B={x|x>2},
∴(∁RA)∩B={x|2<x≤3}.
故答案為:{x|2<x≤3}.

點評 本題考查交、并、補集的混合運算,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.給出下列幾個命題:
①命題“若α=$\frac{π}{4}$,則tanα=1”的逆否命題為假命題;
②命題p:任意x∈R,都有sinx≤1,則“非p”:存在x0∈R,使得sinx0>1
③命題p:存在x0∈R,使得sinx0+cosx0=$\frac{3}{2}$;命題q:△ABC中,A>B?sinA>sinB,則命題“¬p且q”為真命題
④方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示橢圓的充要條件是-3<m<5.
⑤對空間任意一點O和不共線的三點A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,則P、A、B、C四點共面.
其中不正確的個數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線C上任意一點M滿足|MF1|+|MF2|=4,其中F1($0,-\sqrt{3})$,F(xiàn)2($0,\sqrt{3})$,
(Ⅰ)求曲線C的方程;
(Ⅱ)已知直線$l:y=kx+\sqrt{3}$與曲線C交于A,B兩點,是否存在實數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列有關(guān)命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.若p∧q為假命題,則p、q均為假命題
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列函數(shù)是冪函數(shù)的是( 。
①y=-x2;②y=2x;③y=xπ;④y=(x-1)3;⑤y=$\frac{1}{x^2}$;⑥y=x2+$\frac{1}{x}$.
A.①③⑤B.①②⑤C.③⑤D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.與函數(shù)f(x)=|x|表示同一函數(shù)的是(  )
A.f(x)=$\frac{{x}^{2}}{|x|}$B.f(x)=$\sqrt{{x}^{2}}$C.f(x)=($\sqrt{x}$)2D.f(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知冪函數(shù)$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù).
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在區(qū)間(2,3)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.若兩個三角形的三條邊長分別為a、b、c和lga、lgb、lgc,且a、b、c兩兩不等,試判斷這兩個三角形是否相似?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知點A(2,5),直線l1:x+1=0,l2:x+y-3=0,根據(jù)下列條件,分別求△ABC的邊BC所在直線的方程:
(1)11、l2分別是邊AB、AC上的高所在直線的方程;
(2)11、l2分別是邊AB、AC上的中線所在直線的方程;
(3)11、l2分別是∠B、∠C的角平分線所在直線的方程.

查看答案和解析>>

同步練習冊答案