(2013•南開區(qū)二模)已知集合A={x||2x-1|≤3},B=(-3,a),若A∩B=A,則實數(shù)a的取值集合是
(2,+∞)
(2,+∞)
分析:解絕對值不等式求出集合A,根據(jù)B=(-3,a),及A∩B=A,可以求出a的取值范圍,化為集合(區(qū)間)形式后可得答案.
解答:解:∵|2x-1|≤3
∴-3≤2x-1≤3
∴-2≤2x≤4
∴-1≤x≤2
故A=[-1,2]
又∵B=(-3,a),
若A∩B=A
則a>2
故實數(shù)a的取值集合是(2,+∞)
故答案為(2,+∞)
點評:本題考查的知識點是交集及其運算,其中解不等式求出集合A是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(1)寫出函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[-
π
6
,
π
3
]
時,函數(shù)f(x)的最大值與最小值的和為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)設(shè)函數(shù)f(x)=lnx-
1
2
ax2+x

(1)當(dāng)a=2時,求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2-x+
a
x
(0<x≤3),以其圖象上任意一點P(x0,y0)為切點的切線的斜率k≤
1
2
恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=0時,方程mf(x)=x2有唯一實數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)如圖,F(xiàn)1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點.若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)在△ABC中,若a=2,∠B=60°,b=
7
,則BC邊上的高等于
3
3
2
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)二模)在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨立.在A處每投進一球得3分,在B處每投進一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當(dāng)甲同學(xué)選擇方案1時.
①求甲同學(xué)測試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認為甲同學(xué)選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

同步練習(xí)冊答案