偶函數(shù))滿足:,且在區(qū)間上分別遞減和遞增,則不等式的解集為                 (   )

A.                   B.

C.                    D. 

 

【答案】

D

【解析】∵f(x)是偶函數(shù)∴f(-x)=f(x)即f(4)=f(-1)=0又∵f(x)在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增得到圖象如圖:

由圖可知,當(dāng)x>0時x3>0要x3f(x)<0只需f(x)<0即x∈(1,4)當(dāng)x<0時同理可得x∈(-∞,-4)∪(-1,0)故答案選D

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(Ⅰ)求 f(x)的最小正周期;
(Ⅱ)設(shè) 0≤θ≤π,且函數(shù)f(x) 為偶函數(shù),求滿足f(x)=1,x∈[0,π]的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的連續(xù)函數(shù)y=f(x)對任意x滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0,則下列命題正確的有
①②④
①②④

①函數(shù)y=f(x+
3
2
)為偶函數(shù);
②若x1<x2且x1+x2>3,則f(x1)<f(x2);
③f(
2
)>f(sin14°+cos14°);
④若f(
3
2
)•f(5)<0,則y=f(x)有兩個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的命題序號為

①方程組
2x+y=0
x-y=3
的解集為{1,2}
②集合C={
6
3-x
∈z|x∈N*
}={1,2,4,5,6,9}
③f(x)=
x-3
+
2-x
是函數(shù)
④若定義域為[a-1,2a]的函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),則f(0)=1
⑤已知集合A={1,2,3},B={2,3,4,5},則滿足S⊆A且S∩≠∅,B的集合S的個數(shù)為10個
⑥函數(shù)y=
2
x
在定義域內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)我們把定義在R上,且滿足f(x+T)=af(x)(其中常數(shù)a,T滿足a≠1,a≠0,T≠0)的函數(shù)叫做似周期函數(shù).
(1)若某個似周期函數(shù)y=f(x)滿足T=1且圖象關(guān)于直線x=1對稱.求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)T=1,a=2時,某個似周期函數(shù)在0≤x<1時的解析式為f(x)=x(1-x),求函數(shù)y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對于確定的T>0且0<x≤T時,f(x)=3x,試研究似周期函數(shù)函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案