【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有唯一實(shí)數(shù)解,且,求的值.
【答案】(1)見解析(2)
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)設(shè)h(x)=lnx﹣ex+ax﹣a(x>0),求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出n的值即可.
(1)
當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增.
綜上所述:當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增.
(2)由己知可得方程有唯一解,且
設(shè),即有唯一解,
由,則在上單調(diào)遞減.
所以在上單調(diào)遞減,即在單調(diào)遞減.
又時(shí),時(shí),
故存在使得,
當(dāng)時(shí),,在上單調(diào)遞增
時(shí),在上單調(diào)遞減.
又有唯一解,則必有
當(dāng)時(shí),,故存在唯一的滿足下式:
由消去得.
令
故當(dāng)時(shí),在上單調(diào)遞減,
當(dāng)時(shí),在上單調(diào)遞增.
由.
即存在,使得,即.
又關(guān)于的方程有唯一實(shí)數(shù)解,且
.故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,分別記錄了3月1日到3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
他們所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預(yù)報(bào)當(dāng)溫差為時(shí)的種子發(fā)芽數(shù).
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知傾斜角為的直線經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中a為常數(shù):e≈2.71828為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=f(x)在x=0處的切線l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若x>0,不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為提高課堂教學(xué)效果,最近立項(xiàng)了市級(jí)課題《高效課堂教學(xué)模式及其運(yùn)用》,其中王老師是該課題的主研人之一,為獲得第一手?jǐn)?shù)據(jù),她分別在甲、乙兩個(gè)平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進(jìn)行教學(xué)實(shí)驗(yàn).為了解教改實(shí)效,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出如圖所示的莖葉圖,成績大于70分為“成績優(yōu)良”.
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計(jì) |
(2)從甲、乙兩班40個(gè)樣本中,成績?cè)?/span>60分以下(不含60分)的學(xué)生中任意選取2人,記來自甲班的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,為等邊三角形,,,,點(diǎn)是的中點(diǎn).
(1)求證:平面PAD;
(2)求二面角P﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知和個(gè)實(shí)數(shù)若有窮數(shù)列由數(shù)列的項(xiàng)重新排列而成,且下列條件同時(shí)成立:① 個(gè)數(shù)兩兩不同;②當(dāng)時(shí),都成立,則稱為的一個(gè)“友數(shù)列”.
(1)若寫出的全部“友數(shù)列”;
(2)已知是通項(xiàng)公式為的數(shù)列的一個(gè)“友數(shù)列”,且求(用表示);
(3)設(shè)求所有使得通項(xiàng)公式為的數(shù)列不能成為任何數(shù)列的“友數(shù)列”的正實(shí)數(shù)的個(gè)數(shù)(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的極值;
(2)若時(shí),與的單調(diào)性相同,求的取值范圍;
(3)當(dāng)時(shí),函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4,點(diǎn)P(2,3)在橢圓上.
(1)求橢圓C的方程;
(2)過點(diǎn)P引圓的兩條切線PA,PB,切線PA,PB與橢圓C的另一個(gè)交點(diǎn)分別為A,B,試問直線AB的斜率是否為定值?若是,求出其定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com