已知3a+13b=17a,5a+7b=11b,試判斷a、b的大小并證明.
考點(diǎn):不等式比較大小
專題:不等式
分析:利用反證法證明,先假設(shè)a≥b,再構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,得出a<1<b,這與假設(shè)相矛盾,問題得以證明
解答: 解:假設(shè)a≥b,則13a≥13b,5a≥5b,
由3a+13b=17a得3a+13a≥17a,
(
3
17
)a+(
13
17
)a
≥1,
由f(x)=(
3
17
)x
+(
13
17
)x
單調(diào)遞減,
∴f(1)=
3
17
+
13
17
=
16
17
<1,且f(a)≥1>f(1),
則a<1,
由5a+7b=11b,得5b+7b≤11b
(
5
11
)b
+(
7
11
)b
≤1,
由g(x)=(
5
11
)x+(
7
11
)x
單調(diào)遞減,
∴g(1)=
5
11
+
7
11
=
12
11
>1,且g(a)≤1<g(1),
則b>1,
因此a<1<b,這與假設(shè)相矛盾,
故假設(shè)不成立,
故a<b.
點(diǎn)評(píng):本題主要考查了反證法,關(guān)鍵是利用反證法的步驟,找到與假設(shè)相矛盾的問題,屬于難題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的周期:
(1)y=sin
3
4
x,x∈R

(2)y=cos4x,x∈R
(3)y=
1
2
cosx,x∈R

(4)y=sin(
1
3
x+
π
4
),x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-
3
)的值域?yàn)?div id="rfmufhr" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=
3x+a
x2+1
是R上的奇函數(shù),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2,設(shè)函數(shù)g(x)=-qf[f(x)]+(2q-1)f(x)+1,是否存在實(shí)數(shù)q(q>0),使得g(x)在區(qū)間(-∞,-4)是減函數(shù),且在區(qū)間(-4,0)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F(1,0),離心率e=
1
2
,過點(diǎn)F的直線l交橢圓于M、N兩點(diǎn),MN的中垂線交y軸于點(diǎn)P,求點(diǎn)P縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,-3),
b
=(-2,4),
c
=(1,5),若表示向量
a
b
、2
b
-
c
、
d
連接能構(gòu)成四邊形,則向量
d
為(
 
 
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面,且AB=2,BC=1,PA=2,E為PD的中點(diǎn).
(1)求證:面PAB⊥面PBC;
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=2,b=1,∠B=45°,則此三角形有
 
個(gè)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案