分析 (1)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式可得d=1,進(jìn)而得到所求通項(xiàng)公式;
(2)求得bn=an•2n=(n+1)•2n,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
a1=2,a3+a5=10,即為2a1+6d=10,
解得d=1,
則an=a1+(n-1)d=2+n-1=n+1;
(2)bn=an•2n=(n+1)•2n,
前n項(xiàng)和Sn=2•2+3•22+4•23+…+(n+1)•2n,
2Sn=2•22+3•23+4•24+…+(n+1)•2n+1,
兩式相減可得,-Sn=4+22+23+24+…+2n-(n+1)•2n+1
=2+$\frac{2(1-{2}^{n})}{1-2}$-(n+1)•2n+1,
化簡(jiǎn)可得,前n項(xiàng)和Sn=n•2n+1.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{55}}{55}$ | C. | $\frac{\sqrt{11}}{11}$ | D. | $\frac{\sqrt{55}}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | B. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com