已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.

       (1)求橢圓的方程;

       (2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由.

(1)

       (2)i)若n=0,

        ii)若m=0,且過定點(0,1)

       iii)m

       設(shè)A(x1,y1),B(x2,y2),則以AB為直徑的圓的方程為

    (x-x1)(x-x2)+(y-y1)(y-y2)=0

   ∵

       ∴圓方程為:

       將(0,1)代入顯然成立,故存在T(0,1)符合題意。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三下學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)動直線交橢圓、兩點,試問:在坐標(biāo)平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省洛陽市高三下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三12月月考考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.(1)求橢圓的方程;

(2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)

已知橢圓經(jīng)過點,且兩焦點與短軸一端點構(gòu)成等腰直角三角形。

(1)求橢圓的方程;

(2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由。

 

 

 

查看答案和解析>>

同步練習(xí)冊答案