6.直線l經(jīng)過點(diǎn)P(5,5),其斜率為k,直線l與圓x2+y2=25相交,交點(diǎn)分別為A,B.
(1)若AB=4$\sqrt{5}$,求k的值;
(2)若AB<2$\sqrt{7}$,求k的取值范圍;
(3)若OA⊥OB(O為坐標(biāo)原點(diǎn)),求k的值.

分析 (1)分情況討論斜率是否存在,直接利用點(diǎn)到直線的距離公式即可求出k值;
(2)利用點(diǎn)到直線距離關(guān)系判斷圓與直線的位置關(guān)系,列出不等式即可;
(3)因?yàn)镺A⊥OB,OA=OB,故△OAB是等腰直角三角形,再次利用點(diǎn)到直線的距離即可求出k值;

解答 解:當(dāng)直線l斜率不存在時(shí),直線方程為x=5,此時(shí)直線l與圓x2+y2=25相切,不合題意.
設(shè)直線l的方程為y-5=k(x-5),即kx-y+5-5k=0,
由題得:$\frac{{|{5-5k}|}}{{\sqrt{{k^2}+1}}}=\sqrt{{5^2}-{{(2\sqrt{5})}^2}}$,化簡(jiǎn)得:2k2-5k+2=0,解得$k=\frac{1}{2}$或k=2.
(2)由$AB<2\sqrt{7}$得$2\sqrt{{5^2}-{d^2}}<2\sqrt{7}$,得d2>18,
即${({\frac{{|{5-5k}|}}{{\sqrt{{k^2}+1}}}})^2}>18$,解得$k<\frac{1}{7}$或k>7.
又因?yàn)橹本l與圓x2+y2=25交與兩點(diǎn),所以d<5,
即$\frac{{|{5-5k}|}}{{\sqrt{{k^2}+1}}}<5$,解得k>0
所以k的取值范圍為$0<k<\frac{1}{7}$或k>7.
(3)∵OA⊥OB,OA=OB,∴△OAB是等腰直角三角形.
∴O到直線l的距離$d=\frac{{5\sqrt{2}}}{2}$,即$\frac{{|{5-5k}|}}{{\sqrt{{k^2}+1}}}=\frac{{5\sqrt{2}}}{2}$,
解得$k=2±\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式以及直線斜率等知識(shí)點(diǎn),屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{1-2^x}{a+2^{x+1}}$是奇函數(shù),
(1)求a的值;
(2)試判斷f(x)在(-∞,+∞)的單調(diào)性,并請(qǐng)你用函數(shù)單調(diào)性的定義給予證明;
(3)若對(duì)任意的t∈R,不等式f(mt2+1)+f(1-mt)<0恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合U={1,2,3,4},A={1,2},則∁UA等于( 。
A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=|lgx|,若方程f(x)=k有兩個(gè)不等的實(shí)根α,β,則$\frac{1}{α}+\frac{1}{β}$的取值范圍是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},則集合{1,2,4,5,6,7,8}是( 。
A.A∪BB.A∩BC.UA∩∁UBD.UA∪∁UB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)分別為(0,-2),(0,2),經(jīng)過點(diǎn)(4,$3\sqrt{2}$) 
(2)經(jīng)過兩點(diǎn)(2,$-\sqrt{2}$),($-1,\frac{{\sqrt{14}}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)$z=\frac{3-2i}{(2+i)(1-i)}$在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.空間點(diǎn)M(1,2,3)關(guān)于點(diǎn)N(4,6,7)的對(duì)稱點(diǎn)P是( 。
A.(7,10,11)B.(-2,-1,0)C.$(\frac{5}{2},\frac{7}{2},\frac{9}{2})$D.(7,8,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.觀察下表

則前2015行的個(gè)數(shù)和等于20152

查看答案和解析>>

同步練習(xí)冊(cè)答案