已知函數(shù)f(x)=ex+e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù).
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(-x02+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結(jié)論.
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)恒成立問題,不等式比較大小
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)奇偶性的定義即可證明f(x)是R上的偶函數(shù);
(2)利用參數(shù)分離法,將不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,進(jìn)行轉(zhuǎn)化求最值問題即可求實(shí)數(shù)m的取值范圍.
(3)構(gòu)u造函數(shù),利用函數(shù)的單調(diào)性,最值與單調(diào)性之間的關(guān)系,分別進(jìn)行討論即可得到結(jié)論.
解答: (1)證明:∵f(x)=ex+e-x
∴f(-x)=e-x+ex=f(x),
∴f(x)是R上的偶函數(shù);
(2)解:若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,
即m(ex+e-x-1)≤e-x-1,
∵x>0,
∴ex+e-x-1>0,
即m≤
e-x-1
ex+e-x-1
在(0,+∞)上恒成立,
設(shè)t=ex,(t>1),則m≤
1-t
t2-t+1
在(1,+∞)上恒成立,
1-t
t2-t+1
=-
t-1
(t-1)2+(t-1)+1
=-
1
t-1+
1
t-1
+1
≥-
1
3
,當(dāng)且僅當(dāng)t=2,即x=ln2時等號成立,
∴m≤-
1
3
;
(3)令g(x)=ex+e-x-a(-x3+3x),
則g′(x)=ex-e-x+3a(x2-1),
當(dāng)x>1,g′(x)>0,即函數(shù)g(x)在[1,+∞)上單調(diào)遞增,
故此時g(x)的最小值g(1)=e+
1
e
-2a,
由于存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立,
故e+
1
e
-2a<0,
即a>
1
2
(e+
1
e
),
令h(x)=x-(e-1)lnx-1,
則h′(x)=1-
e-1
x

由h′(x)=1-
e-1
x
=0,解得x=e-1,
①當(dāng)0<x<e-1時,h′(x)<0,此時函數(shù)單調(diào)遞減,
②當(dāng)x>e-1時,h′(x)>0,此時函數(shù)單調(diào)遞增,
∴h(x)在(0,+∞)上的最小值為h(e-1),
注意到h(1)=h(e)=0,
∴當(dāng)x∈(1,e-1)⊆(0,e-1)時,h(e-1)≤h(x)<h(1)=0,
當(dāng)x∈(e-1,e)⊆(e-1,+∞)時,h(x)<h(e)=0,
∴h(x)<0,對任意的x∈(1,e)成立.
①a∈(
1
2
(e+
1
e
),e)⊆(1,e)時,h(a)<0,即a-1<(e-1)lna,從而ae-1>ea-1,
②當(dāng)a=e時,ae-1=ea-1,
③當(dāng)a∈(e,+∞),e)⊆(e-1,+∞)時,當(dāng)a>e-1時,h(a)>h(e)=0,即a-1>(e-1)lna,從而ae-1<ea-1
點(diǎn)評:本題考查函數(shù)奇偶性的判斷、最值以及恒成立問題的處理方法,關(guān)鍵是借助于導(dǎo)數(shù)解答本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法中,錯誤的是(  )
A、若“p或q”為假命題,則p,q均為假命題
B、“x=1”是“x≥1”的充分不必要條件
C、“x=
π
6
”是“sinx=
1
2
”的必要不充分條件
D、若命題p:”?實(shí)數(shù)x0,使x02≥0”則命題?p:“對于?x∈R,都有x2<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足前n項(xiàng)之和Sn=2an-4(n∈N*),bn+1=an+2bn,且b1=2,
(1)求數(shù)列{an}的通項(xiàng)公式
(2)證明:{
bn
2n
}是等差數(shù)列
(3)求bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)簇 fn(x)=x2-2(n+1)x+n2+5n-7(n∈N*).
(1)設(shè)曲線列Cn:y=fn(x)的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列{an},求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)曲線列Cn:y=fn(x)的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{bn},Sn為數(shù)列{bn}的前n項(xiàng)和,求S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(0.027) -
1
3
-(-
1
7
-2+(2
7
9
 
1
2
-(
2
-1
0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取200名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有48人.

(Ⅰ)在抽取的學(xué)生中,身高不超過165cm的男、女生各有多少人?并估計(jì)男生的平均身高.
(Ⅱ)在上述200名學(xué)生中,從身高在170~175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當(dāng)旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(m-1)x2+2mx+3是R上的偶函數(shù),則f(-1),f(-
2
),f(
3
)的大小關(guān)系為( 。
A、f(
3
)>f(-
2
)>f(-1)
B、f(
3
)<f(-
2
)<f(-1)
C、f(-
2
)<f(
3
)<f(-1)
D、f(-1)<f(
3
)<f(-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的一組數(shù)據(jù)
x0123
y1357
(I) 請?jiān)诖痤}卡給定的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)完成答題卡上的表格,并用最小二乘法求出y關(guān)于x的回歸方程
y
=
?
b
x+
?
a

參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。
A、必然事件的概率等于1,不可能事件的概率等于0
B、概率是頻率的穩(wěn)定值,頻率是概率的近似值
C、某事件的概率等于1.1
D、對立事件一定是互斥事件

查看答案和解析>>

同步練習(xí)冊答案