【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ= (p>0).
(Ⅰ)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),求 + 的值.

【答案】解:(I)由 ,∴直線l的普通方程為 =0,即sinαx﹣cosαy=0. 把x=ρcosθ,y=ρsinθ代入普通方程得sinαρcosθ﹣cosαρsinθ=0.
∵ρ= ,∴p=ρ﹣ρcosθ=ρ﹣x,∴ρ=p+x,兩邊平方得ρ2=x2+2px+p2 , ∴x2+y2=x2+2px+p2 , 即y2﹣2px﹣p2=0.
(II)聯(lián)立方程組 ,解得
∴|OA|2=( 2+( 2= ,|OB|2=( 2+( 2= ,
∴|OA|= ,|OB|=
+ = + = + )=
【解析】(1)分別用x,y表示t,消去參數(shù)得到普通方程,再化為極坐標(biāo)方程;(2)聯(lián)立方程組解出A,B坐標(biāo),代入兩點(diǎn)間的距離公式得出|OA|,|OB|,再進(jìn)行化簡(jiǎn)計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2+(2a+1)x.(12分)
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a<0時(shí),證明f(x)≤﹣ ﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,ABCD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.

(Ⅰ)求證:BC⊥平面DBE

(Ⅱ)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足xf′(x)﹣f(x)=xlnx,f( )= ,則f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值,又有極小值
D.既無極大值,也無極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,若曲線C的參數(shù)方程為 (α是參數(shù)),直線l的極坐標(biāo)方程為 ρsin(θ﹣ )=1.
(1)將曲線C的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線l上一點(diǎn)向曲線C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

同步練習(xí)冊(cè)答案