A. | $-\frac{5}{2}$ | B. | 0 | C. | $\frac{5}{3}$ | D. | $\frac{5}{2}$ |
分析 由約束條件直線可行域,令z=x+2y,化為$y=-\frac{x}{2}+\frac{z}{2}$,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}y≤2x\\ x+y≥1\\ y≥-1\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得A(2,-1),
令z=x+2y,得$y=-\frac{x}{2}+\frac{z}{2}$,
由圖可知,當(dāng)直線$y=-\frac{x}{2}+\frac{z}{2}$過A(2,-1)時(shí),
直線在y軸上的截距最小,z有最小值為0.
故選:B.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{7}{8},+∞)$ | B. | $(\frac{7}{4},2)$ | C. | $(\frac{7}{8},1)$ | D. | $(\frac{7}{2},4)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分但不必要條件 | B. | 必要但不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要的條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com