如圖,已知拋物線C的頂點在原點,開口向右,過焦點且垂直于拋物線對稱軸的弦長為2,過C上一點A作兩條互相垂直的直線交拋物線于P,Q兩點.
(1)若直線PQ過定點,求點A的坐標;
(2)對于第(1)問的點A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個數(shù);若不能,說明理由.
(1),(2)一個
解析試題分析:(1)確定拋物線標準方程只需一個獨立條件,本題條件為已知通徑長所以拋物線的方程為.直線過定點問題,實際是一個等式恒成立問題.解決問題的核心是建立變量的一個等式.可以考慮將直線的斜率列為變量,為避開討論,可設(shè)的方程為,與聯(lián)立消得,則,設(shè)點坐標為,則有,代入化簡得:因此,點坐標為,(2)若三角形APQ為等腰直角三角形,則的中點與點A連線垂直于.先求出的中點坐標為,再討論方程解的個數(shù),這就轉(zhuǎn)化為研究函數(shù)增減性,并利用零點存在定理判斷零點有且只有一個.
試題解析:(1)設(shè)拋物線的方程為,依題意,,
則所求拋物線的方程為. (2分)
設(shè)直線的方程為,點、的坐標分別為.
由,消得.由,得,
,.∵,∴.
設(shè)點坐標為,則有.
,,
∴或.
∴或, ∵恒成立. ∴.
又直線過定點,即,代入上式得
注意到上式對任意都成立,
故有,從而點坐標為. (8分)
(2)假設(shè)存在以為底邊的等腰直角三角形,由第(1)問可知,將用代換得直線的方程為.設(shè),
由
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的右焦點為,短軸的端點分別為,且.
(1)求橢圓的方程;
(2)過點且斜率為的直線交橢圓于兩點,弦的垂直平分線與軸相交于點.設(shè)弦的中點為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓C1:的右焦點為F,P為橢圓上的一個動點.
(1)求線段PF的中點M的軌跡C2的方程;
(2)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的左、右焦點分別為,離心率,連接橢圓的四個頂點所得四邊形的面積為.
(1)求橢圓C的標準方程;
(2)設(shè)是直線上的不同兩點,若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點在雙曲線上,且雙曲線的一條漸近線的方程是.
(1)求雙曲線的方程;
(2)若過點且斜率為的直線與雙曲線有兩個不同交點,求實數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個不同點,若以線段為直徑的圓經(jīng)過坐標原點,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知,,是橢圓上不同的三點,,,在第三象限,線段的中點在直線上.
(1)求橢圓的標準方程;
(2)求點C的坐標;
(3)設(shè)動點在橢圓上(異于點,,)且直線PB,PC分別交直線OA于,兩點,證明為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,直線與相交于、兩點,與軸、軸分別相交于、兩點,為坐標原點.
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個三等分點,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)雙曲線C:(a>0,b>0)的一個焦點坐標為(,0),離心率, A、B是雙曲線上的兩點,AB的中點M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com