已知橢圓,直線相交于兩點(diǎn),軸、軸分別相交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個(gè)三等分點(diǎn),若存在,求出直線的方程;若不存在,說明理由.

(1);(2)存在,且直線的方程為.

解析試題分析:(1)先確定三個(gè)頂點(diǎn)的坐標(biāo),利用其外接圓圓心即為該三角形垂直平分線的交點(diǎn)求出外接圓的圓心,并利用兩點(diǎn)間的距離公式求出外接圓的半徑,從而求出外接圓的方程;(2)將是線段的兩個(gè)三等分點(diǎn)等價(jià)轉(zhuǎn)化為線段的中點(diǎn)與線段的中點(diǎn)重合,且有,借助韋達(dá)定理與弦長公式進(jìn)行求解.
試題解析:(1)因?yàn)橹本的方程為,
所以軸的交點(diǎn),與軸的交點(diǎn).
則線段的中點(diǎn),
外接圓的圓心為,半徑為,
所以外接圓的方程為
(2)結(jié)論:存在直線,使得、是線段的兩個(gè)三等分點(diǎn).
理由如下:
由題意,設(shè)直線的方程為,,
,
由方程組,
所以,(*)
由韋達(dá)定理,得.
、是線段的兩個(gè)三等分點(diǎn),得線段的中點(diǎn)與線段的中點(diǎn)重合.
所以,
解得.
、是線段的兩個(gè)三等分點(diǎn),得.
所以,

解得.
驗(yàn)證知(*)成立.
所以存在直線,使得是線段的兩個(gè)三等分點(diǎn),此時(shí)直線l的方程為,
.
考點(diǎn):1.三角形的外接圓方程;2.韋達(dá)定理;3.弦長公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開口向右,過焦點(diǎn)且垂直于拋物線對(duì)稱軸的弦長為2,過C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn).

(1)若直線PQ過定點(diǎn),求點(diǎn)A的坐標(biāo);
(2)對(duì)于第(1)問的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個(gè)數(shù);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知、、是長軸長為的橢圓上的三點(diǎn),點(diǎn)是長軸的一個(gè)端點(diǎn),過橢圓中心,且

(1)求橢圓的方程;
(2)在橢圓上是否存點(diǎn),使得?若存在,有幾個(gè)(不必求出點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說明理由;
(3)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作圓的兩條線,切點(diǎn)分別為,,若直線 在軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短半軸長為,動(dòng)點(diǎn)在直線為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)的垂線與以為直徑的圓交于點(diǎn)
求證:線段的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線的中心在原點(diǎn),右焦點(diǎn)為,漸近線方程為 .
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線交于兩點(diǎn),問:當(dāng)為何值時(shí),以 為直徑的圓過原點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動(dòng)圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過點(diǎn)且相互垂直的兩條直線,拋物線與交于點(diǎn)交于點(diǎn)
證明:無論如何取直線,都有為一常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為,求拋物線與雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案