【題目】已知函數(shù),(,).
(1)當(dāng)時(shí),求函數(shù)的極小值點(diǎn);
(2)當(dāng)時(shí),若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題(1)當(dāng)時(shí),,則.
討論,兩種情況,研究單調(diào)性得極小值(2) (2)當(dāng)時(shí),可化為,即,令,則.當(dāng)時(shí),對(duì)于一切,有,,
所以恒成立.當(dāng)時(shí),符合題意;當(dāng)時(shí),存在,使得,在上單調(diào)遞減,從而有:時(shí),,不符合題意,即得的取值范圍
試題解析:
(1)當(dāng)時(shí),,則.
當(dāng)時(shí),,所以在上單調(diào)遞增,故無(wú)極值點(diǎn);
當(dāng)時(shí),由 ,得,
當(dāng)時(shí),,所以在上單調(diào)遞減;
當(dāng)時(shí),,所以在上單調(diào)遞增.
所以的極小值點(diǎn)為.
(2)當(dāng)時(shí),可化為,即,
令,則.
當(dāng)時(shí),對(duì)于一切,有,,
所以恒成立.
下面考慮時(shí)的情況.
當(dāng)時(shí),對(duì)于一切,有,,所以恒成立,
所以在上是增函數(shù),所以,符合題意;
當(dāng)時(shí),,,由零點(diǎn)存在性定理可知,一定存在,使得,且當(dāng)時(shí),,所以在上單調(diào)遞減,從而有:時(shí),,不符合題意.
綜上可知,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有一批專(zhuān)業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專(zhuān)業(yè)技術(shù)人員中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取人,求至少有人的學(xué)歷為研究生的概率;
(2)在這個(gè)公司的專(zhuān)業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中歲以下人,歲以上人,再?gòu)倪@個(gè)人中隨機(jī)抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了教職工的住房問(wèn)題,計(jì)劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費(fèi)為元,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層的建筑費(fèi)用相同都為400元,以后每增高一層,其建筑費(fèi)用就增加50元.試設(shè)計(jì)這幢宿舍樓的樓高層數(shù),使總費(fèi)用最少,并求出其最少費(fèi)用.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線E:y2=2px(p>0),圓C與拋物線E的準(zhǔn)線交于M、N兩點(diǎn),△MNF的面積為p,其中F是E的焦點(diǎn).
(1)求拋物線E的方程;
(2)不過(guò)原點(diǎn)O的動(dòng)直線l交該拋物線于A,B兩點(diǎn),且滿(mǎn)足OA⊥OB,設(shè)點(diǎn)Q為圓C上任意一動(dòng)點(diǎn),求當(dāng)動(dòng)點(diǎn)Q到直線l的距離最大時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種子公司對(duì)一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關(guān)系進(jìn)行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗(yàn)地每天的晝夜溫差和每塊實(shí)驗(yàn)地里50顆種子的發(fā)芽數(shù),得到如下資料:
(1)從上述十組試驗(yàn)數(shù)據(jù)來(lái)看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關(guān)關(guān)系?是否具有線性相關(guān)關(guān)系?
(2)若在一定溫度范圍內(nèi),晝夜溫差與發(fā)芽數(shù)近似滿(mǎn)足相關(guān)關(guān)系:(其中).取后五組數(shù)據(jù),利用最小二乘法求出線性回歸方程(精確到0.01);
(3)利用(2)的結(jié)論,若發(fā)芽數(shù)試驗(yàn)值與預(yù)測(cè)值差的絕對(duì)值不超過(guò)3個(gè)就認(rèn)為正常,否則認(rèn)為不正常.從上述十組試驗(yàn)中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠家擬在新年舉行大型的促銷(xiāo)活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷(xiāo)費(fèi)用為萬(wàn)元時(shí),銷(xiāo)售量萬(wàn)件滿(mǎn)足(其中,為正常數(shù)).現(xiàn)假定生產(chǎn)量與銷(xiāo)售量相等,已知生產(chǎn)該產(chǎn)品萬(wàn)件還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿(mǎn)足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱(chēng)數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足,,,數(shù)列滿(mǎn)足.
(1)證明是等差數(shù)列,并求的通項(xiàng)公式;
(2)設(shè)數(shù)列滿(mǎn)足,,記表示不超過(guò)x的最大整數(shù),求關(guān)于n的不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com