分析 (1)設(shè)出二次函數(shù)的表達(dá)式,得到關(guān)于a,b,c的方程,解出即可求出函數(shù)的表達(dá)式;
(2)求出f(cosθ),問(wèn)題轉(zhuǎn)化為sin2θ+(1+m)sinθ+1≥0對(duì)θ∈R恒成立,令g(θ)=sin2θ+(1+m)sinθ+1,通過(guò)討論對(duì)稱(chēng)軸的位置,從而求出g(θ)的最小值,得到關(guān)于m的不等式,解出即可.
解答 解:(1)∵函數(shù)f(x)為二次函數(shù),
∴設(shè)f(x)=ax2+bx+c,
∵不等式f(x)<0的解集為(-2,1)且f(0)=-2,
∴$\left\{\begin{array}{l}{c=-2}\\{4a-2b-2=0}\\{a+b-2=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\\{c=-2}\end{array}\right.$,
∴f(x)=x2+x-2;
(2)由(1)得:f(cosθ)=cos2θ+cosθ-2,
∴由不等式$f({cosθ})≤\sqrt{2}sin({θ+\frac{π}{4}})+msinθ$對(duì)θ∈R恒成立,
得:cos2θ+cosθ-2≤$\sqrt{2}$sin(θ+$\frac{π}{4}$)+msinθ對(duì)θ∈R恒成立,
∴sin2θ+(1+m)sinθ+1≥0對(duì)θ∈R恒成立,
令g(θ)=sin2θ+(1+m)sinθ+1=${(sinθ+\frac{m+1}{2})}^{2}$+1-$\frac{{(m+1)}^{2}}{4}$,
∵-1≤sinθ≤1,
∴①-1≤$\frac{m+1}{2}$≤1即-3≤m≤1時(shí):
gmin(θ)=1-$\frac{{(m+1)}^{2}}{4}$≥0,
解得:-3≤m≤1,符合題意;
②$\frac{m+1}{2}$<-1即m<-3時(shí):
gmin(θ)=${(1+\frac{m+1}{2})}^{2}$+1-$\frac{{(m+1)}^{2}}{4}$>0,
解得:m>-3,無(wú)解;
③$\frac{m+1}{2}$>1即m>1時(shí):
gmin(θ)=${(-1+\frac{m+1}{2})}^{2}$+1-$\frac{{(m+1)}^{2}}{4}$>0,
解得:m<1,無(wú)解;
綜上,滿(mǎn)足條件的m的范圍是[-3,1].
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是待定系數(shù)法求二次函數(shù)的表達(dá)式,考察三角函數(shù)的最值,其中構(gòu)造函數(shù)g(θ)=sos2θ+(1+m)sinθ+1,將問(wèn)題轉(zhuǎn)化為函數(shù)恒成立問(wèn)題是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R,使得lnx0+x03+2x02+4=0 | B. | ?x0∈R,使得ex0+x03+2x02+4≠0 | ||
C. | ?x∈R,使得ex+x3+2x2+4=0 | D. | ?x0∈R,使得ex0+x03+2x02+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,2] | B. | (1,2] | C. | (0,1) | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(1,\frac{5}{3}]$ | B. | (0,1) | C. | (1,+∞) | D. | $[\frac{5}{3},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $-\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com