18.已知復(fù)數(shù)w滿足w-1=(1+w)i(i為虛數(shù)單位),則w=( 。
A.1-iB.-iC.-1+iD.i

分析 根據(jù)復(fù)數(shù)的代數(shù)運(yùn)算,求出復(fù)數(shù)w即可.

解答 解:∵復(fù)數(shù)w滿足w-1=(1+w)i(i為虛數(shù)單位),
∴w=$\frac{1+i}{1-i}$=$\frac{{(1+i)}^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的代數(shù)運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1.當(dāng)n≥2時(shí),an+2SN-1=2n+1,則S299=( 。
A.246B.299C.247D.248

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=1,a2+a3=6.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{{a}_{n},n為偶數(shù)}\end{array}\right.$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn
(Ⅰ)若數(shù)列{an}是等差數(shù)列,則滿足a5=0,S1=2S2+8,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若2Sn=3an-1,證明數(shù)列{an}是等比數(shù)列,并求其前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=s-ke-x的圖象在x=0處的切線方程為y=x.
(1)求s,k的值;
(2)若$g(x)=mlnx-{e^{-x}}+\frac{1}{2}{x^2}-(m+1)x+1(m>0)$,求函數(shù)h(x)=g(x)-f(x)的單調(diào)區(qū)間;
(3)若正項(xiàng)數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,證明:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,求異面直線A1B與B1C所成的角60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知拋物線C:x2=8y的焦點(diǎn)為F,動(dòng)點(diǎn)Q在C上,圓Q的半徑為1,過(guò)點(diǎn)F的直線與圓Q切于點(diǎn) P,則$\overrightarrow{F{P}}•\overrightarrow{FQ}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足2acosB=2c-b.
(1)求角A;
(2)若a是b,c的等比中項(xiàng),判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義在區(qū)間[-$\frac{3π}{2}$,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱,當(dāng)x∈[-$\frac{π}{4}$,π]時(shí),函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),且其圖象如圖所示.
(1)求函數(shù)y=f(x)在區(qū)間[-$\frac{3π}{2}$,π]上的表達(dá)式;
(2)求滿足f(x)=$\sqrt{3}$的實(shí)數(shù)x的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案