【題目】設(shè)橢圓的離心率為,圓與正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn)、,求證:.
【答案】(1);(2)詳見(jiàn)解析.
【解析】
(1)由離心率為得,再根據(jù)圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為得到點(diǎn)在橢圓上,解方程組即得到橢圓的標(biāo)準(zhǔn)方程.
(2)先證明當(dāng)過(guò)點(diǎn)與圓相切的切線斜率不存在時(shí),再證明當(dāng)過(guò)點(diǎn)與圓相切的切線斜率存在時(shí),即可得證.
(1)解設(shè)橢圓的半焦距為,由橢圓的離心率為,由題知,,∴橢圓的方程為,解得,點(diǎn)在橢圓上,∴,解得,,∴橢圓的方程為.
(2)證明:當(dāng)過(guò)點(diǎn)與圓相切的切線斜率不存在時(shí),不妨設(shè)切線的方程為,
由(1)知,,,,,
∴,即,
當(dāng)過(guò)點(diǎn)與圓相切的切線斜率存在時(shí),
可設(shè)切線的方程為,,,
∴,即,
聯(lián)立直線和橢圓的方程得,
即,
得,且,,
∵,,
∴,
綜上所述,圓上任意一點(diǎn)、、處的切線交橢圓于點(diǎn),都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的奇函數(shù)有最小正周期4,且時(shí),
(1)判斷并證明在上的單調(diào)性,并求在上的解析式;
(2)當(dāng)為何值時(shí),關(guān)于的方程在上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)已知過(guò)點(diǎn)的直線與圓相交截得的弦長(zhǎng)為,求直線的方程;
(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在路邊安裝路燈:路寬米,燈桿長(zhǎng)米,且與燈柱成120°角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直且正好通過(guò)道路路面的中線.
(1)求燈柱高的長(zhǎng)度(精確到0.01米);
(2)若該路燈投射出的光成一個(gè)圓錐體,該圓錐體母線與軸線的夾角是30°,寫出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫出其相應(yīng)的幾何量(精確到0.01米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)如果恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線過(guò)點(diǎn)(為非零常數(shù))與軸不垂直的直線與C交于兩點(diǎn).
(1)求證:(是坐標(biāo)原點(diǎn));
(2)AB的垂直平分線與軸交于,求實(shí)數(shù)的取值范圍;
(3)設(shè)A關(guān)于軸的對(duì)稱點(diǎn)為D,求證:直線BD過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)數(shù)使得則稱是區(qū)間的一內(nèi)點(diǎn).
(1)求證:的充要條件是存在使得是區(qū)間的一內(nèi)點(diǎn);
(2)若實(shí)數(shù)滿足:求證:存在,使得是區(qū)間的一內(nèi)點(diǎn);
(3)給定實(shí)數(shù),若對(duì)于任意區(qū)間,是區(qū)間的一內(nèi)點(diǎn),是區(qū)間的一內(nèi)點(diǎn),且不等式和不等式對(duì)于任意都恒成立,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人各進(jìn)行次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率,
(Ⅰ)記甲擊中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多擊中目標(biāo)次的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com