下面對命題“函數(shù)f(x)=x+是奇函數(shù)”的證明不是綜合法的是( )

A.?x∈R且x≠0有f(﹣x)=(﹣x)+=﹣(x+)=﹣f(x),∴f(x)是奇函數(shù)

B.?x∈R且x≠0有f(x)+f(﹣x)=x++(﹣x)+(﹣)=0,∴f(x)=﹣f(﹣x),∴f(x)是奇函數(shù)

C.?x∈R且x≠0,∵f(x)≠0,∴==﹣1,∴f(﹣x)=﹣f(x),∴f(x)是奇函數(shù)

D.取x=﹣1,f(﹣1)=﹣1+=﹣2,又f(1)=1+=2

 

D

【解析】

試題分析:數(shù)學中的綜合法就是根據(jù)已知的條件、定理、公理和已知的結論,經(jīng)過嚴密的推理,推出要征得結論,其顯著的特征是“由因導果”.

【解析】
數(shù)學中的綜合法就是根據(jù)已知的條件、定理、公理和已知的結論,經(jīng)過嚴密的推理,推出要征得結論,

其顯著的特征是“由因導果”,

前三個選項中對命題“函數(shù)f(x)=x+是奇函數(shù)”的證明都是:“由因導果”,“由因導果”,

選項D屬于不完全歸納法.

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

水平放置的△ABC的斜二測直觀圖如圖所示,已知A′C′=3,B′C′=2,則AB邊上的中線的實際長度為( 。
A、
5
2
B、5
C、
5
4
D、2

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習卷(解析版) 題型:填空題

工人師傅在如圖1的一塊矩形鐵皮的中間畫了一條曲線,并沿曲線剪開,將所得的兩部分卷成圓柱狀,如圖2,然后將其對接,可做成一個直角的“拐脖”,如圖3.對工人師傅所畫的曲線,有如下說法:

(1)是一段拋物線;

(2)是一段雙曲線;

(3)是一段正弦曲線;

(4)是一段余弦曲線;

(5)是一段圓。

則正確的說法序號是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習卷(解析版) 題型:填空題

(2010•徐州二模)如圖AB、AC是⊙O的兩條弦,∠A=30°,過點C的切線與OB的延長線交于點D,則∠D的度數(shù)為 度.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習卷(解析版) 題型:選擇題

如圖,⊙O是△ABC的內切圓,切點分別是D、E、F,已知∠A=100°,∠C=30°,則∠DFE的度數(shù)是( )

A.55° B.60° C.65° D.70°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

(文)下列說法中正確的是( )

A.合情推理就是類比推理

B.歸納推理是從一般到特殊的推理

C.合情推理就是歸納推理

D.類比推理是從特殊到特殊的推理

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

下列表述正確的是( )

①歸納推理是由特殊到一般的推理;

②演繹推理是由一般到特殊的推理;

③類比推理是由特殊到一般的推理;

④分析法是一種間接證明法;

⑤若z∈C,且|z+2﹣2i|=1,則|z﹣2﹣2i|的最小值是3.

A.①②③④ B.②③④ C.①②④⑤ D.①②⑤

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

分析法是從要證的不等式出發(fā),尋求使它成立的( )

A.充分條件 B.必要條件

C.充要條件 D.既不充分又不必要條件

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.2數(shù)學證明練習卷(解析版) 題型:選擇題

(2014•上海二模)一個機器人每一秒鐘前進或后退一步,程序設計師讓機器人以前進3步,然后再后退2步的規(guī)律移動.如果將機器人放在數(shù)軸的原點,面向正的方向,以1步的距離為1個單位長度.令P(n)表示第n秒時機器人所在位置的坐標,且記P(0)=0,則下列結論中錯誤的是( )

A.P(3)=3 B.P(5)=1 C.P(2003)>P(2005) D.P(2003)<P(2005)

 

查看答案和解析>>

同步練習冊答案