已知函數(shù)

(1)求函數(shù)的極值點;

(2)若直線過點且與曲線相切,求直線的方程;

 

【答案】

(1)是函數(shù)的極小值點,極大值點不存在.(2)

【解析】(1)>0     …………1分

>0lnx+1>0<0<00<所以上單調(diào)遞減,在上單調(diào)遞增.………………3分

 所以是函數(shù)的極小值點,極大值點不存在.…………………4分

(2)設(shè)切點坐標(biāo)為,則切線的斜率為

所以切線的方程為       …………6分

又切線過點,所以有

解得所以直線的方程為………8分

(3),則 <0<00<>0所以上單調(diào)遞減,在上單調(diào)遞增.………………9分

當(dāng)時,上單調(diào)遞增,所以上的最小值為……10分

當(dāng)1<<e,即1<a<2時,上單調(diào)遞減,在上單調(diào)遞增.

上的最小值為      ………12分

當(dāng)時,上單調(diào)遞減,

所以上的最小值為……13分

綜上,當(dāng)時,的最小值為0;當(dāng)1<a<2時,的最小值為

當(dāng)時,的最小值為………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟南外國語高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟南外國語高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題

(本小題滿分14分)

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習(xí)冊答案