15.已知點F(1,0),圓E:(x+1)2+y2=8,點P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)若直線l與圓O:x2+y2=1相切,并與(1)中軌跡Γ交于不同的兩點A、B,與x軸交于點M,當$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且滿足$\frac{2}{3}$≤λ≤$\frac{3}{4}$,求$\frac{|AM|}{|BM|}$的取值范圍.

分析 (I)由|EQ|+|PQ|=|PE|=2$\sqrt{2}$>|EF|可知Q的軌跡為以E,F(xiàn)為焦點的橢圓,利用橢圓的定義求出橢圓方程;
(II)設(shè)直線l的方程為y=kx+m,根據(jù)直線l與單位圓相切得出k,m的關(guān)系,聯(lián)立直線與橢圓方程,根據(jù)根與系數(shù)的關(guān)系得出A,B坐標的關(guān)系,根據(jù)λ的范圍即可求出k2的范圍,利用勾股定理將$\frac{|AM|}{|BM|}$轉(zhuǎn)化為A,B橫坐標的比,使用換元法求出$\frac{|AM|}{|BM|}$的范圍.

解答 解:(I)圓E的圓心E(-1,0),半徑r=2$\sqrt{2}$.|EF|=2
∵Q為PE中垂線上的點,∴|PQ|=|QE|,
又|EQ|+|PQ|=|PE|=2$\sqrt{2}$,
∴|QE|+|QF|=2$\sqrt{2}$>2,
∴Q的軌跡為以E,F(xiàn)為焦點的橢圓.
設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
則$\left\{\begin{array}{l}{2a=2\sqrt{2}}\\{2c=2}\end{array}\right.$,∴a=$\sqrt{2}$,b=1.
∴動點Q的軌跡Γ的方程為$\frac{{x}^{2}}{2}$+y2=1.
(II)當直線l無斜率時,不妨設(shè)直線l的方程為x=1,則A(1,$\frac{\sqrt{2}}{2}$),B(1,-$\frac{\sqrt{2}}{2}$),M(1,0).
∴$\overrightarrow{OA}•\overrightarrow{OB}$=1-$\frac{1}{2}$=$\frac{1}{2}$,不符合題意,
當直線l的斜率為0時,直線l與橢圓只有一個公共點,不符合題意,
設(shè)直線l的方程為y=kx+m(k≠0),
∵直線l與單位圓O相切,∴$\frac{|m|}{\sqrt{{k}^{2}+1}}$=1,即m2=k2+1.
聯(lián)立方程組$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,消去y得:(1+2k2)x2+4kmx+2m2-2=0.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$.
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2
=$\frac{(1+{k}^{2})(2{m}^{2}-2)}{1+2{k}^{2}}$-$\frac{4{k}^{2}{m}^{2}}{1+2{k}^{2}}$+m2=$\frac{2{k}^{2}(1+{k}^{2})}{1+2{k}^{2}}$-$\frac{4{k}^{2}({k}^{2}+1)}{1+2{k}^{2}}$+k2+1=$\frac{{k}^{2}+1}{1+2{k}^{2}}$.
∴$\frac{2}{3}$≤$\frac{{k}^{2}+1}{1+2{k}^{2}}$≤$\frac{3}{4}$,解得$\frac{1}{2}$≤k2≤1.
令$\frac{|AM|}{|BM|}$=t,則t2=$\frac{|AM{|}^{2}}{|BM{|}^{2}}$=$\frac{|O{A|}^{2}-1}{|O{B|}^{2}-1}$=$\frac{{{x}_{1}}^{2}+{{y}_{1}}^{2}-1}{{{x}_{2}}^{2}+{{y}_{2}}^{2}-1}$=$\frac{{{x}_{1}}^{2}}{{{x}_{2}}^{2}}$.
∵x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$=$\frac{2{k}^{2}}{1+2{k}^{2}}$>0,∴$\frac{{x}_{1}}{{x}_{2}}$>0.不妨設(shè)x1>0,x2>0.
則t=$\frac{{x}_{1}}{{x}_{2}}$,∴t+$\frac{1}{t}$=$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{16{k}^{2}({k}^{2}+1)}{2{k}^{2}(1+2{k}^{2})}$-2=2+$\frac{4}{1+2{k}^{2}}$.
∵$\frac{1}{2}$≤k2≤1,∴$\frac{10}{3}$≤2+$\frac{4}{1+2{k}^{2}}$≤4.即$\frac{10}{3}≤t+\frac{1}{t}≤4$,
解得2-$\sqrt{3}$≤t≤$\frac{1}{3}$或3≤t≤2+$\sqrt{3}$.
∴$\frac{|AM|}{|BM|}$的取值范圍范圍是[2-$\sqrt{3}$,$\frac{1}{3}$]∪[3,2+$\sqrt{3}$].

點評 本題考查了軌跡方程的求解,橢圓的性質(zhì),直線與橢圓的位置關(guān)系,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線3x+4y-2=0與直線2x+y+2=0的交點坐標是( 。
A.(2,2)B.(2,-2)C.(-2,2)D.(-2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有下列四個命題:
①若函數(shù)定義域不關(guān)于原點對稱,則該函數(shù)是非奇非偶函數(shù);
②若函數(shù)定義域關(guān)于原點對稱,則該函數(shù)為奇函數(shù)或偶函數(shù);
③若定義域內(nèi)存在一實數(shù)x,使得f(-x)=-f(x),則f(x)為奇函數(shù);
④若定義域內(nèi)存在一實數(shù)x,使得f(-x)≠f(x),則f(x)不為偶函數(shù);
⑤既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R);
⑥偶函數(shù)的圖象若不經(jīng)過原點,則它與x軸的交點個數(shù)一定是偶數(shù),以上命題中正確的為①④⑤⑥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)x=-2與x=4是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(Ⅰ)求常數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)的極大值與極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)在(a,b)內(nèi)可導(dǎo),則f′(x)<0是f(x)在(a,b)內(nèi)單調(diào)遞減的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對于可導(dǎo)函數(shù)f(x),f′(x0)=0并不是f(x)在x=x0處有極值的充分條件.對于可導(dǎo)函數(shù)f(x),x=x0是f(x)的極值點,必須具備①f′(x0)=0,②在x0兩側(cè),f′(x)的符號為異號,所以f′(x0)=0只是f(x)在x0處有極值的必要條件,但不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知m∈R.若函數(shù)f(x)=x3-3(m+1)x2+12mx+1在[0,3]上無極值點,則m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e為自然對數(shù)的底數(shù).
(1)若a=-$\frac{{e}^{2}}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當a∈(2,+∞)時,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.①歸納推理是由一般到一般的推理;②歸納推理是由部分到整體的推理;
③演繹推理是由一般到特殊的推理;④類比推理是由特殊到特殊的推理;
⑤類比推理是由特殊到一般的推理;
正確的是②③④.

查看答案和解析>>

同步練習(xí)冊答案