【題目】如圖,在平面四邊形ABCD中,已知A,B,AB6.AB邊上取點E,使得BE1,連接ECED.若∠CED,EC.

(1)sinBCE的值;

(2)CD的長.

【答案】(1) (2)7

【解析】

1)在三角形中,利用正弦定理求得.

2)證得,結合(1)中的值,求得的值,在直角三角形中求得的值,在三角形中,利用余弦定理求得.

(1)在△BEC中,由正弦定理,知,

因為BBE1,CE

所以sinBCE.

(2)因為∠CEDB,所以∠DEA=∠BCE

所以cosDEA.

因為,所以△AED為直角三角形,又AE5,

所以ED2.

在△CED中,CD2CE2DE22CE·DE·cosCED728×2×49.

所以CD7.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為:

(1)把直線的參數(shù)方程化為極坐標方程,把曲線的極坐標方程化為普通方程;

(2)求直線與曲線交點的極坐標(≥0,0≤).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓關于直線對稱的圓為

(1)求圓C的方程;

(2)過點(1,0)作直線l與圓C交于A,B兩點,O是坐標原點,是否存在直線l,使得∠AOB=90°?若存在,求出所有滿足條件的直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓: 的離心率為,拋物線:軸所得的線段長等于.軸的交點為,過點作直線相交于點直線分別與相交于.

(1)求證:

(2),的面積分別為, ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的圖象在點處的切線方程為,求在區(qū)間[-2,4]上的最大值;

(2)當時,若在區(qū)間(-1,1)上不單調,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.

(1)試用表示;

(2)若要使最大,則鋁合金窗的寬和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

年份

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程;

,

(2)若近幾年該農(nóng)產(chǎn)品每千克的價格(單位:元)與年產(chǎn)量滿足的函數(shù)關系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預測該地區(qū)2019()年該農(nóng)產(chǎn)品的產(chǎn)量;

②當為何值時,銷售額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于的點

(1)證明:平面平面;

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由。

查看答案和解析>>

同步練習冊答案