【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3=.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項(xiàng)和Tn.
【答案】(1) ;(2) .
【解析】試題分析:(1)根據(jù)等差數(shù)列的基本量運(yùn)算解出和,代入公式算出等差數(shù)列的通項(xiàng)公式;(2)計(jì)算出等比數(shù)列的首項(xiàng)和公比,代入求和公式計(jì)算.
試題解析:
(1)設(shè){an}的公差為d,由已知得
解得a1=1,d=,
故{an}的通項(xiàng)公式an=1+,即an=.
(2)由(1)得b1=1,b4=a15==8.
設(shè){bn}的公比為q,則q3==8,從而q=2,
故{bn}的前n項(xiàng)和Tn==2n-1.
點(diǎn)睛:本題考查等差數(shù)列的基本量運(yùn)算求通項(xiàng)公式以及等比數(shù)列的前n項(xiàng)和,屬于基礎(chǔ)題. 在數(shù)列求和中,最常見最基本的求和就是等差數(shù)列、等比數(shù)列中的求和,這時(shí)除了熟練掌握求和公式外還要熟記一些常見的求和結(jié)論,再就是分清數(shù)列的項(xiàng)數(shù),比如題中給出的,以免在套用公式時(shí)出錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥平面ABCD,且∠ABC= .
(1)求證:BC∥平面AB1C1;
(2)求證:平面A1ABB1⊥平面AB1C1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且,垂足為E,若將沿AM折起,使點(diǎn)D位于位置,連接,得四棱錐.
Ⅰ求證:;
Ⅱ若,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,且.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點(diǎn)使得平面平面,若存在,求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點(diǎn)O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成角的大小為45°時(shí),求AE的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,E,F,G分別為,,AB的中點(diǎn).
求證:平面平面BEF;
若平面,求證:H為BC的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則四棱錐P﹣ABCD的外接球半徑R的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,若票價(jià)定為70元,預(yù)測(cè)該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A,B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連續(xù)PB交圓O于點(diǎn)D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com