已知(1+x)n的展開(kāi)式中,第二、三、四項(xiàng)的系數(shù)成等差數(shù)列,則n等于( )
A.7
B.7或2
C.6
D.6或14
【答案】分析:由二項(xiàng)式定理,可得(1+x)n的展開(kāi)式的第二、三、四項(xiàng)的系數(shù),再結(jié)合題意,其展開(kāi)式的第二、三、四項(xiàng)的系數(shù)成等差數(shù)列,可得
n+=2×;解可得答案.
解答:解:根據(jù)題意,(1+x)n的展開(kāi)式為Tr+1=Cnrxr,
則第二、三、四項(xiàng)的系數(shù)分別為Cn1、Cn2、Cn3,
即n、、
又由這三項(xiàng)的系數(shù)成等差數(shù)列,
即n+=2×
解可得:n=7,n=0(舍)n=2(舍);
故選A.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的運(yùn)用,難點(diǎn)在于解關(guān)于n的方程n+=2×,注意化簡(jiǎn)的技巧即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知f(x)=(x+1)n且f′(x)展成關(guān)于x的多項(xiàng)式,其中x2的系數(shù)為60,則n=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開(kāi)式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開(kāi)式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省青島二中高二(上)9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開(kāi)式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第97-99課時(shí)):第十三章 導(dǎo)數(shù)-導(dǎo)數(shù)的應(yīng)用(2)(解析版) 題型:選擇題

已知f(x)=(x+1)n且f′(x)展成關(guān)于x的多項(xiàng)式,其中x2的系數(shù)為60,則n=( )
A.7
B.6
C.5
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案