【題目】已知函數(shù).

1)證明:當(dāng)時,上是增函數(shù);

2)是否存在實數(shù),只有唯一正數(shù),對任意正數(shù),使不等式恒成立?若存在,求出這樣的;若不存在,請說明理由.

【答案】(1)詳見解析;(2)存在實數(shù)只有唯一值,符合題意.

【解析】

1)將上是增函數(shù)轉(zhuǎn)化為上恒成立,構(gòu)造新函數(shù)利用導(dǎo)數(shù)求最值即可證明.

2)將恒成立轉(zhuǎn)化為恒成立,利用導(dǎo)數(shù)研究其單調(diào)性及最值,找到符合題意的正數(shù)的值.

證明:(1

,因此是增函數(shù)

,因此是增函數(shù)

2)取,可知,

①當(dāng)時,可得遞減,是遞增

因為存在唯一的正數(shù),使得

故只能

上遞減,在上遞增

,此時只有唯一值

②當(dāng)時,為增函數(shù),,故

當(dāng)時,滿足不唯一

當(dāng)時,滿足只能,

時滿足

因此時,值不唯一

故存在實數(shù),只有唯一值

當(dāng)時恒有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.

(1),求線段中點M的軌跡方程;

(2)若直線AB的方向向量為,當(dāng)焦點為時,求的面積;

(3)M是拋物線C準(zhǔn)線上的點,求證:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的函數(shù),若存在,使得單調(diào)遞增,在上單調(diào)遞減,則稱上的單峰函數(shù),為峰點,包含峰點的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長度為:

(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點;若不是,說出原因;;

(2)若函數(shù)上的單峰函數(shù),求實數(shù)的取值范圍;

(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當(dāng)滿足何種條件時,所確定的含峰區(qū)間的長度不大于0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),給出以下四個命題,其中真命題的序號是_______.

時,單調(diào)遞減且沒有最值;

②方程一定有解;

③如果方程有解,則解的個數(shù)一定是偶數(shù);

是偶函數(shù)且有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,點中點,且,現(xiàn)將三角形沿折起,使點到達(dá)點的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

1) 證明:當(dāng)時,掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;

方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎所獲獎金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,試比較哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,,平面

1)求異面直線所成角的大;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案