已知函數(shù)f(x)=
x2x-2
,(x∈R,
且x≠2)
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=x2-2ax與函數(shù)f(x)在x∈[0,1]時(shí)有相同的值域,求a的值;
(3)設(shè)a≥1,函數(shù)h(x)=x3-3a2x+5a,x∈[0,1],若對于任意x1∈[0,1],總存在x0∈[0,1],使得h(x0)=f(x1)成立,求a的取值范圍.
分析:(1)把f(x)用分離常數(shù)法分開,再利用常用函數(shù)的單調(diào)性來求f(x)的單調(diào)區(qū)間
(2)先有(1)的結(jié)論把f(x)在x∈[0,1]上的值域找到,利用兩函數(shù)有相同的值域求a的值
(3)先證h(x)的單調(diào)性,再求h(x)的值域,利用h(x)的值域求a
解答:解:(1)f(x)=
x2
x-2
=
[(x-2)+2]2
x-2
=(x-2)+
4
x-2
+4

易得f(x)的單調(diào)遞增區(qū)間為(-∞,0),(4,+∞);單調(diào)遞減區(qū)間為(0,2),(2,4).(5分)
(2)∵f(x)在x∈[0,1]上單調(diào)遞減,
∴其值域?yàn)閇-1,0],
即x∈[0,1],g(x)∈[-1,0].
∵g(0)=0為最大值,
∴最小值只能為g(1)或g(a),
若g(1)=-1?
a≥1
1-2a=-1
?a=1
;
若g(a)=-1?
1
2
≤a≤1
-a2=-1
?a=1

綜上得a=1;(10分)
(3)設(shè)h(x)的值域?yàn)锳,由題意知,[-1,0]⊆A.以下先證h(x)的單調(diào)性:設(shè)0≤x1<x2≤1,
∵h(yuǎn)(x1)-h(x2)=x13-x23-3a2(x1-x2)=(x1-x2)(x12+x1x2+x22-3a2)>0,
(a≥1?3a2≥3,x12+x1x2+x22<3),
∴h(x)在[0,1]上單調(diào)遞減.
hmax=h(0)=5a≥0
hmin=h(1)=1-3a2+5a≤-1
?a≥2
,
∴a的取值范圍是[2,+∞)(16分)
點(diǎn)評:本題是對函數(shù)的單調(diào)區(qū)間和含參數(shù)的函數(shù)值域的綜合考查,對含有參數(shù)的函數(shù)式,在確定單調(diào)性時(shí),要注意分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案