已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1
分析:先根據(jù)焦點(diǎn)坐標(biāo)求得c,再根據(jù)離心率求得a,最后根據(jù)b=
c2-a2
求得b,橢圓的方程可得.
解答:解:已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則c=3,a=6,b2=36-9=27,
橢圓的方程為
x2
36
+
y2
27
=1
,
故選A.
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程.要熟練掌握橢圓的基本性質(zhì)及標(biāo)準(zhǔn)方程中a,b和c的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Ω的離心率為
1
2
,它的一個(gè)焦點(diǎn)和拋物線y2=-4x的焦點(diǎn)重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過(guò)點(diǎn)(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過(guò)直線l:x=4上點(diǎn)M引橢圓Ω的兩條切線,切點(diǎn)分別為A,B,求證:直線AB恒過(guò)定點(diǎn)C;
②是否存在實(shí)數(shù)λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案