【題目】如圖,圓柱的軸截面是邊長為2的正方形,點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)在平面上的射影為點(diǎn),點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問題.
(。┳C明:平面;
(ⅱ)求平面與平面所成二面角的正弦值.
【答案】(1)見解析(2)(。┮娊馕觯áⅲ
【解析】
(1)證明垂直平面內(nèi)的兩條相交直線,再利用面面垂直的判定定理證明即可;
(2)當(dāng)三棱錐體積最大時(shí),點(diǎn)為圓弧的中點(diǎn),所以點(diǎn)為圓弧的中點(diǎn),所以四邊形為正方形,且平面.(ⅰ)連接并延長交于點(diǎn),連接并延長交于點(diǎn),連接,則,再由線面平行的判定定理證得結(jié)論;(ⅱ)由平面垂直,所以以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,求兩向量夾角的余弦值,進(jìn)而得到二面角的正弦值.
(1)因?yàn)?/span>是軸截面,所以平面,所以,
又點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),且為直徑,所以,
又平面平面,所以平面,而平面,故平面平面.
(2)當(dāng)三棱錐體積最大時(shí),點(diǎn)為圓弧的中點(diǎn),所以點(diǎn)為圓弧的中點(diǎn),所以四邊形為正方形,且平面.
(ⅰ)連接并延長交于點(diǎn),連接并延長交于點(diǎn),連接,則,
因?yàn)?/span>分別為兩個(gè)三角形的重心,∴,
所以,又平面平面,所以平面.
(ⅱ)平面垂直,所以以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,如圖所示:
則,設(shè)平面的法向量,則即可取,
又平面的法向量,
所以,所以.
所以平面與平面所成二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)a<0,求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a<0,且對(duì)任意的x>0,f(x)≤f(2),試比較ln(-a)與-2b的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則( )
A.函數(shù)為奇函數(shù)
B.函數(shù)在上單調(diào)遞增
C.若,則的最小值為
D.函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱柱的底面邊長為2,側(cè)棱,為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論中正確結(jié)論為( )
A.若,則滿足條件的點(diǎn)有且只有一個(gè)
B.若,則點(diǎn)的軌跡是一段圓弧
C.若∥平面,則長的最小值為2
D.若∥平面,且,則平面截正四棱柱的外接球所得平面圖形的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù), 是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線方程是.
(1)求的值;(2)求的單調(diào)區(qū)間;
(3)設(shè)(其中為的導(dǎo)函數(shù)).證明:對(duì)任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解數(shù)學(xué)課外興趣小組的學(xué)習(xí)情況,從某次測(cè)試的成績中隨機(jī)抽取名學(xué)生的成績進(jìn)行分析,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖估計(jì)本次測(cè)試成績的眾數(shù);
(2)從成績不低于分的兩組學(xué)生中任選人,求選出的兩人來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會(huì)》(第二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開場(chǎng)詩詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )
A. 288種 B. 144種 C. 720種 D. 360種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以兩條長邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1張A0紙對(duì)裁后可以得到2張A1紙,1張A1紙對(duì)裁可以得到2張A2紙,依此類推.這是因?yàn)?/span>A系列紙張的長寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( 。
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交橢圓于、兩點(diǎn),且線段的中點(diǎn)為,直線與橢圓交于、兩點(diǎn)
(1)求直線與直線斜率的乘積;
(2)若,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com