【題目】已知函數(shù)為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點處的切線方程是.

(1)求的值;(2)求的單調(diào)區(qū)間;

(3)設(shè)(其中的導函數(shù)).證明:對任意,

【答案】(1);(2)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(3)見解析.

【解析】

【試題分析】(1)依據(jù)題設(shè)導數(shù)的幾何意義建立方程分析求解;(2)依據(jù)導數(shù)與函數(shù)的單調(diào)性之間的關(guān)系分析求解;(3)先將不等式進行等價轉(zhuǎn)化,再借助導數(shù)分析推證:

(1)由.由已知得,解得.又,即,.

(2)由(1)得,令

時,;當時,,又時,;

時,,的單調(diào)遞增區(qū)間是,的單調(diào)遞減區(qū)間是

(3)由已知有,于是對任意等價于,由(2)知,,易得,當時,,即單調(diào)遞增;當時,,即單調(diào)遞減.的最大值為,故.設(shè),因此,當單調(diào)遞增,,故當時,,即..對任意

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線C的左、右焦點為F1,F2,直線ybC的右支相交于點P,若|PF1|2|PF2|,則雙曲線C的離心率為_____;若該雙曲線的焦點到其漸近線的距離是,則雙曲線的方程為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四川省閬中中學某部根據(jù)運動場地的影響,但為盡大可能讓學生都參與到運動會中來,在2018春季運動會中設(shè)置了五個項目,其中屬于跑步類的兩項,分別是200米和400米,另外三項分別為跳繩、跳遠、跳高學校要求每位學生必須參加,且只參加其中一項,學校780名同學參加各運動項目人數(shù)統(tǒng)計如下條形圖:

其中參加跑步類的人數(shù)所占頻率為,為了了解學生身體健康與參加運動項目之間的關(guān)系,用分層抽樣的方法從這780名學生中抽取13人進行分析.

1求條形圖中mn的值以及抽取的13人中參加200米的學生人數(shù);

2現(xiàn)從抽取的參加400米和跳繩兩個項目中隨機抽取4人,記其中參加400米跑的學生人數(shù)為X,求離散型隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,點F為拋物線的焦點,焦點F到直線3x-4y+3=0的距離為d1,焦點F到拋物線C的準線的距離為d2,且

(1)拋物線C的標準方程;

(2)若在x軸上存在點M,過點M的直線l分別與拋物線C相交于P、Q兩點,且為定值,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓柱的軸截面是邊長為2的正方形,點是圓弧上的一動點(不與重合),點是圓弧的中點,且點在平面的兩側(cè).

1)證明:平面平面;

2)設(shè)點在平面上的射影為點,點分別是的重心,當三棱錐體積最大時,回答下列問題.

(。┳C明:平面;

(ⅱ)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等腰梯形ABCD中,已知ABADCD1BC2,將ABD沿直線BD翻折成ABD,如圖,則直線BACD所成角的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】京劇是我國的國粹,是國家級非物質(zhì)文化遺產(chǎn),為紀念著名京劇表演藝術(shù)家,京劇藝術(shù)大師梅蘭芳先生,某電視臺《我愛京劇》的一期比賽中,2梅派傳人和4位京劇票友(資深業(yè)余愛好者)在幕后登臺演唱同一曲目《貴妃醉酒》選段,假設(shè)6位演員的演唱水平相當,由現(xiàn)場40位大眾評委和梅派傳人的朋友猜測哪兩位是真正的梅派傳人.

1)此欄目編導對本期的40位大眾評委的年齡和對京劇知識的了解進行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù)如下:

京劇票友

一般愛好者

合計

50歲以上

15

10

25

50歲以下

3

12

15

合計

18

22

40

試問:在犯錯誤的概率不超過多少的前提下,可以認為年齡的大小與對京劇知識的了解有關(guān)系?

2)若在一輪中演唱中,每猜出一位亮相一位,且規(guī)定猜出2梅派傳人或猜出5人后就終止,記本輪競猜一共競猜次,求隨機變量的分布列與期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓C)的左、右焦點分別為,,直線l交橢圓CA,B兩點,且的周長為8.

1)求橢圓C的方程;

2)若線段的中點為P,直線與橢圓C交于M,N兩點,且,求直線l的方程.

查看答案和解析>>

同步練習冊答案