已知函數(shù)
(1)求f(x)的最小正周期和最大值;
(2)如果,求銳角α.
【答案】分析:(1)利用三角函數(shù)的平方關系化簡函數(shù)的表達式,利用兩角和的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,直接利用周期公式?求出函數(shù)的周期,求出最大值.
(2)通過,銳角的條件,化簡后,直接求出銳角α.
解答:解:(1)=sinα+cosα=,x≠kπ,k∈Z,
所以,所以周期為T=2π;最大值為
(2)因為,所以,即sinα=,因為銳角α,所以,
點評:本題是基礎題,考查三角函數(shù)的化簡求值,函數(shù)的周期的求法,考查計算能力,常考題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式
(1)求f(x)的定義域;
(2)判斷的奇偶性并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳實驗學校高三(上)數(shù)學周末練習(九)(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的單調遞增區(qū)間;
(2)若不等式|f(x)-m|<2在上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省肇慶市高一(上)期末數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)
(1)求f(1),f(-3),f(a+1)的值;
(2)求函數(shù)f(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年重慶市求精中學高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的最小正周期
(2)當x∈[0,π]時,若f(x)=1,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年安徽省高二下學期第一次月考數(shù)學文卷 題型:解答題

(12分)

已知函數(shù)

(1)求f(x)的定義域;

(2)判斷f(x)的奇偶性并證明;

 

 

查看答案和解析>>

同步練習冊答案