化簡(1)
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)

(2)
1-cos4α-sin4α
1-cos6α-sin6α
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)由條件利用誘導(dǎo)公式,求得所給式子的值.
(2)由條件利用誘導(dǎo)公式、平方差公式、立方和公式、同角三角函數(shù)的基本關(guān)系,化簡所給式子,可得結(jié)果.
解答: 解:(1)
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)
=
-tanα•cosα•(-cosα)
-cosα•sinα
=-tanα
cosα
sinα
=-1.
(2)
1-cos4α-sin4α
1-cos6α-sin6α
=
1-(cos2α+sin2α)2+2sin2α•cos2α
1-1×[cos4α-sin2α•cos2α+sin4α]
=
2sin2α•cos2α
3sin2α•cos2α
=
2
3
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若α是第二象限角,sin(π-α)=
10
10
.求
2sin2
α
2
+8sin
α
2
cos
α
2
+8cos2
α
2
-5
2
sin(α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性.
(1)y=
1-cosx
+
cosx-1
;
(2)y=sin(
3x
4
+
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=2x-x2,
(1)求f(x)=-3的根;    
(2)當(dāng)x∈[-1,2]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ex

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)過點P(0,
4
e2
)作直線y=f(x)相切,求證:這樣的直線l至少有兩條,且這些直線的斜率之和m∈(
e2-1
e2
,
2e2-1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

抽獎游戲規(guī)則如下:一個口袋中裝有完全一樣的8個球,其中4個球上寫有數(shù)字“5”,另外4個球上寫有數(shù)字“10”.
(1)每次摸出一個球,記下球上的數(shù)字后放回,求抽獎?wù)咚拇蚊驍?shù)字之和為30的概率;
(2)若抽獎?wù)呙拷?元錢(抽獎成本)獲得一次抽獎機會,每次摸出4個球,若4個球數(shù)字之和為20或40則中一等獎,獎勵價值20元的商品一件;若4個球數(shù)字之和為25或35則中二等獎,獎勵價值2元的商品一件;若4個球數(shù)字之和為30則不中獎.試求抽獎?wù)呤找姒危í勂穬r值-抽獎成本)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+1).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;
(Ⅲ)如果在公共定義域D上的函數(shù)f(x),f1(x),f2(x)滿足f1(x)<f(x)<f2(x),那么就稱f(x)為f1(x)、f2(x)的“可控函數(shù)”.已知函數(shù)f1(x)=xlnx-a2lnx-
1
2
x2+(2a+1)x,f2(x)=x3+x+a,若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x)、f2(x)的“可控函數(shù)”,求實數(shù)a的取范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
cx+1(0<x<c)
2-
x
c2
+1(c≤x<1)
滿足f(c2)=
9
8

(1)求常數(shù)c的值;
(2)求使f(x)>
2
8
+1成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式 loga(x+5)>loga(3-x)(a>0且a≠1)

查看答案和解析>>

同步練習(xí)冊答案