如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是,的中點.
(I)求證:平面
(II)求證:;
(III)設PD="AD=a," 求三棱錐B-EFC的體積.
(Ⅰ)見解析
(Ⅱ)證明見解析
(Ⅲ)∴
第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因為,,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是的中點,    
,.       …4分
(Ⅱ)證明:四邊形為正方形,
,
, ,
,.    ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖示,邊長為4的正方形與正三角形所在平面互相垂直,M、Q分別是PC,AD的中點。

(1)求證:
(2)求多面體的體積
(3)試問:在線段AB上是否存在一點N,使面若存在,指出N的位置,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為的中點,點為平面內(nèi)一點,線段互相平分,則滿足的實數(shù)的值有(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個棱柱為正四棱柱的條件是( 。
A.底面是正方形,有兩個側(cè)面垂直于底面
B.底面是正方形,有兩個側(cè)面是矩形
C.底面是菱形,且有一個頂點處的三條棱兩兩垂直
D.每個底面是全等的矩形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是線段BC的中點O。

(1)證明在側(cè)棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.
(Ⅰ)求證:點為棱的中點;
(Ⅱ)判斷四棱錐的體積是否相等,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在所有棱長都相等的斜三棱柱中,已知,,且,連接
(1)求證:平面
(2)求證:四邊形為正方形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A,B,C,D為四個不同的點,則它們能確定(  )個平面。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某幾何體中的線段AB,在其三視圖中對應線段的長分別為2、4、4,則在原幾何體中線段AB的長度為(   )
A.B.C.6D.18

查看答案和解析>>

同步練習冊答案