已知橢圓的中心為坐標原點,短軸長為2,一條準線的方程為l:x=2.
(1)求橢圓的標準方程.
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應的圓Q的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過點(,1),O為坐標原點.
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設A,B分別是直線y=x和y=-x上的動點,且|AB|=,設O為坐標原點,動點P滿足=+.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的右焦點為F(1,0),且點(-1,)在橢圓C上.
(1)求橢圓C的標準方程.
(2)已知點Q(,0),動直線l過點F,且直線l與橢圓C交于A,B兩點,證明:·為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,一條準線l:x=2.
(1)求橢圓C的方程;
(2)設O為坐標原點,M是l上的點,F為橢圓C的右焦點,過點F作OM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ=,求圓D的方程;
②若M是l上的動點,求證點P在定圓上,并求該定圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com