直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

(1) +x2=1.   (2) 定值.理由見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BCx軸,證明:直線AC經(jīng)過原點(diǎn)O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知常數(shù),向量,經(jīng)過定點(diǎn)為方向向量的直線與經(jīng)過定點(diǎn)為方向向量的直線相交于,其中
(1)求點(diǎn)的軌跡的方程;(2)若,過的直線交曲線兩點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我校某同學(xué)設(shè)計了一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”來慶祝數(shù)學(xué)學(xué)科節(jié)的成功舉辦.其中、是過拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線方程;
(2)當(dāng)“蝴蝶形圖案”的面積最小時求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于PQ兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時,OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線的方程為l:x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)O為坐標(biāo)原點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為,設(shè)左頂點(diǎn)為A,上頂點(diǎn)為B且,如圖.

(1)求橢圓的方程;
(2)若,過的直線交橢圓于兩點(diǎn),試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案