經(jīng)濟(jì)學(xué)中有一個(gè)用來(lái)權(quán)衡企業(yè)生產(chǎn)能力(簡(jiǎn)稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個(gè)企業(yè)在產(chǎn)能最大化的條件下,在一定時(shí)期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時(shí)期內(nèi)能生產(chǎn)A產(chǎn)品x臺(tái)和B產(chǎn)品y臺(tái),則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個(gè)序號(hào)填寫(xiě)下表:
點(diǎn)Pi(x,y)對(duì)應(yīng)的產(chǎn)量組合實(shí)際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺(tái)利潤(rùn)為a(a>0)元,B產(chǎn)品每臺(tái)利潤(rùn)為A產(chǎn)品每臺(tái)利潤(rùn)的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺(tái)才能使企業(yè)從中獲得最大利潤(rùn)?

【答案】分析:(1)將四個(gè)點(diǎn)的坐標(biāo)分別代入,P1(350,450)代入,滿足函數(shù)關(guān)系式,所以是一種使產(chǎn)能最大化的產(chǎn)量組合,其它一一加以計(jì)算并驗(yàn)證可得答案;
(2)先構(gòu)建函數(shù),再用換元法,轉(zhuǎn)化為二次函數(shù),從而求出答案.
解答:解:(1)將P1(350,450)代入,滿足函數(shù)關(guān)系式,所以是一種使產(chǎn)能最大化的產(chǎn)量組合;
同理P2(200,300)一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
P3(500,400),P4(408,420)是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
(2)設(shè)生產(chǎn)A產(chǎn)品x臺(tái),B產(chǎn)品y臺(tái),,令(0≤t≤40)
則  ,∴t=30利潤(rùn)最大,∴x=350,y=450
點(diǎn)評(píng):本題主要考查函數(shù)模型的利用,考查函數(shù)最值問(wèn)題,應(yīng)注意與實(shí)際問(wèn)題相聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•普陀區(qū)二模)經(jīng)濟(jì)學(xué)中有一個(gè)用來(lái)權(quán)衡企業(yè)生產(chǎn)能力(簡(jiǎn)稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個(gè)企業(yè)在產(chǎn)能最大化的條件下,在一定時(shí)期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時(shí)期內(nèi)能生產(chǎn)A產(chǎn)品x臺(tái)和B產(chǎn)品y臺(tái),則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為y=15
1600-2x
(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個(gè)序號(hào)填寫(xiě)下表:
點(diǎn)Pi(x,y)對(duì)應(yīng)的產(chǎn)量組合 實(shí)際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺(tái)利潤(rùn)為a(a>0)元,B產(chǎn)品每臺(tái)利潤(rùn)為A產(chǎn)品每臺(tái)利潤(rùn)的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺(tái)才能使企業(yè)從中獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從參加市聯(lián)考的甲、乙兩班數(shù)學(xué)成績(jī)110分以上的同學(xué)中各隨機(jī)抽取8人,將這16人的數(shù)學(xué)成績(jī)編成如下莖葉圖.
(Ⅰ)莖葉圖中有一個(gè)數(shù)據(jù)污損不清(用△表示),若甲班抽出來(lái)的同學(xué)平均成績(jī)?yōu)?22分,試推算這個(gè)污損的數(shù)據(jù)是多少?
(Ⅱ)現(xiàn)要從成績(jī)?cè)?30分以上的5位同學(xué)中選2位作數(shù)學(xué)學(xué)習(xí)方法介紹,請(qǐng)將所有可能的結(jié)果列舉出來(lái),并求選出的兩位同學(xué)不在同一個(gè)班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)濟(jì)學(xué)中有一個(gè)用來(lái)權(quán)衡企業(yè)生產(chǎn)能力(簡(jiǎn)稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個(gè)企業(yè)在產(chǎn)能最大化的條件下,在一定時(shí)期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時(shí)期內(nèi)能生產(chǎn)A產(chǎn)品x臺(tái)和B產(chǎn)品y臺(tái),則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為數(shù)學(xué)公式(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個(gè)序號(hào)填寫(xiě)下表:
點(diǎn)Pi(x,y)對(duì)應(yīng)的產(chǎn)量組合實(shí)際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺(tái)利潤(rùn)為a(a>0)元,B產(chǎn)品每臺(tái)利潤(rùn)為A產(chǎn)品每臺(tái)利潤(rùn)的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺(tái)才能使企業(yè)從中獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省無(wú)錫市高考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

經(jīng)濟(jì)學(xué)中有一個(gè)用來(lái)權(quán)衡企業(yè)生產(chǎn)能力(簡(jiǎn)稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個(gè)企業(yè)在產(chǎn)能最大化的條件下,在一定時(shí)期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時(shí)期內(nèi)能生產(chǎn)A產(chǎn)品x臺(tái)和B產(chǎn)品y臺(tái),則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個(gè)序號(hào)填寫(xiě)下表:
點(diǎn)Pi(x,y)對(duì)應(yīng)的產(chǎn)量組合實(shí)際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺(tái)利潤(rùn)為a(a>0)元,B產(chǎn)品每臺(tái)利潤(rùn)為A產(chǎn)品每臺(tái)利潤(rùn)的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺(tái)才能使企業(yè)從中獲得最大利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案