【題目】如圖1,在四邊形中,,,中點(diǎn),將沿折到的位置,連結(jié),如圖2.

1)求證:;

2)若,求平面與平面所成銳二面角的大小.

【答案】1)見解析;(2.

【解析】

1)取的中點(diǎn),連接,可證平面,從而可證.

2)設(shè)平面平面,可證為二面角的平面角,根據(jù)可求的大小,從而可得所求得銳二面角的大小.

1)在四邊形中連接,在四棱錐中連接.

如圖,在四邊形中,因?yàn)?/span>,故四邊形為平行四邊形,

,所以四邊形為菱形,同理四邊形為菱形,

,所以,故為等邊三角形,

所以也為等邊三角形.

在四棱錐中,取的中點(diǎn),連接.

因?yàn)?/span>的中點(diǎn),所以,同理,

因?yàn)?/span>,所以平面,因平面,故.

2)設(shè)平面平面

由(1)可知,而平面,平面,所以平面.

平面,所以,故.

由(1)得,,故為二面角的平面角.

因?yàn)?/span>為等邊三角形且,故,同理

因?yàn)?/span>,所以,

因?yàn)?/span>,故.

所以平面與平面所成銳二面角的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)當(dāng)函數(shù)在區(qū)間上有且只有個極值點(diǎn)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ABBC4,BB12,點(diǎn)E、FM分別為C1D1,A1D1B1C1的中點(diǎn),過點(diǎn)M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.

1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)

2)在圖2中,求證:D1B⊥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將四個不同的小球放入三個分別標(biāo)有1、2、3號的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( .

A.B.C.D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項(xiàng)的最大值記為,第項(xiàng)之后各項(xiàng)的最小值記為,記

(1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;

(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;

(3)若對任意恒成立,證明:數(shù)列的通項(xiàng)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C:()的焦點(diǎn)F到直線的距離為AB是過拋物線C焦點(diǎn)F的動弦,O是坐標(biāo)原點(diǎn),過A,B兩點(diǎn)分別作此拋物線的切線,兩切線相交于點(diǎn)P

1)求證:

2)若動弦AB不經(jīng)過點(diǎn),直線AB與準(zhǔn)線l相交于點(diǎn)N,記MA,MB,MN的斜率分別為,,.問:是否存在常數(shù)λ,使得在弦AB運(yùn)動時恒成立?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,且.

1的通項(xiàng)公式為__________;

2)在、、、項(xiàng)中,被除余的項(xiàng)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長時,求

查看答案和解析>>

同步練習(xí)冊答案