已知函數(shù)f(x)=x3+ax2+2(a∈R)且曲線y=f(x)在點(diǎn)(2,f(2))處切線斜率為0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在區(qū)間[-1,3]上的最大值和最小值.
(Ⅰ)∵f'(x)=3x2+2ax,而曲線y=f(x)在點(diǎn)(2,f(2))處切線斜率為0
∴f'(2)=0…(4分)
∴3×4+4a=0∴a=-3…(6分)
(Ⅱ)f(x)=x3-3x2+2,f'(x)=3x2-6x
令f'(x)=0得x1=0,x2=2…(9分)
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表
x-1(-1,0)0(0,2)2(2,3)3
f'(x)+0-0+
f(x)-22-22
…(11分)
從上表可知,最大值是2,最小值是-2.…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-
1
2
x2+cx+d在x=2處取得極值.
(1)求c的值;
(2)當(dāng)x<0時(shí),f(x)<
1
6
d2+2d恒成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx+d是R上的奇函數(shù),且在x=1時(shí)取得極小值-
2
3

(1)求函數(shù)f(x)的解析式;
(2)對(duì)任意x1,x2∈[-1,1],證明:f(x1)-f(x2)≤
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某出版社出版一讀物,一頁上所印文字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商為節(jié)約紙張,應(yīng)選用怎樣的尺寸的頁面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2-2x+3,在閉區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=xsinx在x=x0處取得極值,則(1+x02)cos2x0的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x3-x-x+1在閉區(qū)間[-1,1]上的最8值是( 。
A.
32
27
B.
26
27
C.0D.-
32
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·豫北聯(lián)考]計(jì)算定積分dx=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,,,則的大小關(guān)系是(      ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案