精英家教網 > 高中數學 > 題目詳情

【題目】某經銷商從外地水產養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統計,按重量分類統計結果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數量;
(3)為適應市場需求,了解這批小龍蝦的口感,該經銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分層抽樣抽取10只,再隨機抽取3只品嘗,記X為抽到二等品的數量,求抽到二級品的期望.

【答案】
(1)解:由于40只小龍蝦中重量不超過35g的小龍蝦有6+10+12=28(只)

所以


(2)解:從統計圖中可以估計每只小龍蝦的重量

= (克)

所以購進100千克,小龍蝦的數量約有100000÷28.5≈3509(只)


(3)解:由題意知抽取一等品、二等品、三等品分別為4只、5只、1只,X=0,1,2,3

則可得 ,

,

所以


【解析】(1)由于40只小龍蝦中重量不超過35g的小龍蝦有6+10+12(只),利用古典概率計算公式即可得出.(2)求出其平均數,可得從統計圖中可以估計每只小龍蝦的重量.(3)由題意知抽取一等品、二等品、三等品分別為4只、5只、1只,X=0,1,2,3.利用超幾何分布列的概率 的計算公式即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中,角、、的對邊分別為、、,的外接圓半徑.

1)若,,求;

2)在中,若為鈍角,求證:

3)給定三個正實數、,其中,問:、滿足怎樣的關系時,以、為邊長,為外接圓半徑的不存在,存在一個或存在兩個(全等的三角形算作同一個)?在存在的情兄下,用、表示.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實數a的值;

(2)若A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為
(1)求函數y=f(x)的對稱軸方程;
(2)若函數y=f(x)﹣ 在(0,π)上的零點為x1 , x2 , 求cos(x1﹣x2)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分) 某校為了解高一期末數學考試的情況,從高一的所有學生數學試卷中隨機抽取份試卷進行成績分析,得到數學成績頻率分布直方圖(如圖所示),其中成績在,的學生人數為6.

直方圖中的值;

試估計所抽取的數學成績的平均數;

)試根據樣本估計該校高一學生期末數學考試成績的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若集合A{x|2x3},B{x|x+2)(xa)<0},則a1”AB____條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數分布表

周跑量(km/周)

人數

100

120

130

180

220

150

60

30

10

(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:

注:請先用鉛筆畫,確定后再用黑色水筆描黑

(2)根據以上圖表數據計算得樣本的平均數為,試求樣本的中位數(保留一位小數),并用平均數、中位數等數字特征估計該市跑步愛好者周跑量的分布特點

(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類別

休閑跑者

核心跑者

精英跑者

裝備價格(單位:元)

2500

4000

4500

根據以上數據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一元二次函數的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.

1)求該一元二次函數;

2)要將該函數圖象的頂點平移到原點,請說出平移的方式.

查看答案和解析>>

同步練習冊答案