【題目】某經銷商從外地水產養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統計,按重量分類統計結果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數量;
(3)為適應市場需求,了解這批小龍蝦的口感,該經銷商將這40只小龍蝦分成三個等級,如下表:
等級 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分層抽樣抽取10只,再隨機抽取3只品嘗,記X為抽到二等品的數量,求抽到二級品的期望.
【答案】
(1)解:由于40只小龍蝦中重量不超過35g的小龍蝦有6+10+12=28(只)
所以 .
(2)解:從統計圖中可以估計每只小龍蝦的重量
= (克)
所以購進100千克,小龍蝦的數量約有100000÷28.5≈3509(只)
(3)解:由題意知抽取一等品、二等品、三等品分別為4只、5只、1只,X=0,1,2,3
則可得 , ,
,
所以 .
【解析】(1)由于40只小龍蝦中重量不超過35g的小龍蝦有6+10+12(只),利用古典概率計算公式即可得出.(2)求出其平均數,可得從統計圖中可以估計每只小龍蝦的重量.(3)由題意知抽取一等品、二等品、三等品分別為4只、5只、1只,X=0,1,2,3.利用超幾何分布列的概率 的計算公式即可得出.
科目:高中數學 來源: 題型:
【題目】在中,角、、的對邊分別為、、,為的外接圓半徑.
(1)若,,,求;
(2)在中,若為鈍角,求證:;
(3)給定三個正實數、、,其中,問:、、滿足怎樣的關系時,以、為邊長,為外接圓半徑的不存在,存在一個或存在兩個(全等的三角形算作同一個)?在存在的情兄下,用、、表示.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數a的值;
(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為 .
(1)求函數y=f(x)的對稱軸方程;
(2)若函數y=f(x)﹣ 在(0,π)上的零點為x1 , x2 , 求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某校為了解高一期末數學考試的情況,從高一的所有學生數學試卷中隨機抽取份試卷進行成績分析,得到數學成績頻率分布直方圖(如圖所示),其中成績在,的學生人數為6.
(Ⅰ)求直方圖中的值;
(Ⅱ)試估計所抽取的數學成績的平均數;
(Ⅲ)試根據樣本估計“該校高一學生期末數學考試成績”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數分布表
周跑量(km/周) | |||||||||
人數 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據以上圖表數據計算得樣本的平均數為,試求樣本的中位數(保留一位小數),并用平均數、中位數等數字特征估計該市跑步愛好者周跑量的分布特點
(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據以上數據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一元二次函數的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.
(1)求該一元二次函數;
(2)要將該函數圖象的頂點平移到原點,請說出平移的方式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com