【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當租金定為多少時,才能使一天的純收入最大?
【答案】
(1)解:由題意:當0<x≤5且x∈N*時,f(x)=40x﹣92
當x>5且x∈N*時,f(x)=[40﹣2(x﹣5)]x﹣92=﹣2x2+50x﹣92
∴
其定義域為{x|x∈N*且x≤40}
(2)解:當0<x≤5且x∈N*時,f(x)=40x﹣92,
∴當x=5時,f(x)max=108(元)
當x>5且x∈N*時,f(x)=﹣2x2+50x﹣92=﹣2(x﹣ )2+
∵開口向下,對稱軸為x= ,
又∵x∈N*,∴當x=12或13時f(x)max=220(元)
∵220>108,∴當租金定為12元或13元時,一天的純收入最大為220元
【解析】(1)利用函數(shù)關系建立各個取值范圍內(nèi)的凈收入與日租金的關系式,寫出該分段函數(shù),是解決該題的關鍵,注意實際問題中的自變量取值范圍;(2)利用一次函數(shù),二次函數(shù)的單調(diào)性解決該最值問題是解決本題的關鍵.注意自變量取值區(qū)間上的函數(shù)類型.應取每段上最大值的較大的即為該函數(shù)的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,過橢圓: ()焦點的直線交于兩點, 為的中點,且的斜率為9.
(Ⅰ)求的方程;
(Ⅱ)是的左、右頂點, 是上的兩點,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】非空集合A中的元素個數(shù)用(A)表示,定義(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,則a的所有可能值為( )
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD,PC的中點
(1)求證:EF⊥平面PBC
(2)若直線PC與平面ABCD所成角為 ,點P在AB上的射影O在靠近點B的一側,求二面角P﹣EF﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若全集U=R,函數(shù)y= + 的定義域為A,函數(shù)y= 的值域為B.
(1)求集合A,B;
(2)求(UA)∩(UB).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com