已知的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/48/9/1irov3.png" style="vertical-align:middle;" />,且恒有等式對任意的實(shí)
數(shù)成立.
(Ⅰ)試求的解析式;
(Ⅱ)討論在上的單調(diào)性,并用單調(diào)性定義予以證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)判斷函數(shù)在上的單調(diào)性并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)中均為實(shí)數(shù),且滿足,對于任意實(shí)數(shù)都有,并且當(dāng)時(shí)有成立。
(1)求的值;
(2)證明:;
(3)當(dāng)∈[-2,2]且取最小值時(shí),函數(shù)(為實(shí)數(shù))是單調(diào)函數(shù),求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知偶函數(shù)滿足:當(dāng)時(shí),,
當(dāng)時(shí),
(1) 求當(dāng)時(shí),的表達(dá)式;
(2) 試討論:當(dāng)實(shí)數(shù)滿足什么條件時(shí),函數(shù)有4個(gè)零點(diǎn),
且這4個(gè)零點(diǎn)從小到大依次構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
(1)判斷函數(shù)的單調(diào)性并證明; (2)是否存在實(shí)數(shù)a使函數(shù)f (x)為奇函數(shù)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(diǎn),
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域;
(3)證明函數(shù)在(0,+上單調(diào)遞減,并寫出的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)y=f (x)=在區(qū)間 (-2,+∞)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com