12.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.26B.11C.4D.1

分析 由算法的程序框圖,計(jì)算各次循環(huán)的結(jié)果,滿足條件,結(jié)束程序,即可得解.

解答 解:模擬程序的運(yùn)行,可得
i=1,S=0
滿足條件i<4,執(zhí)行循環(huán)體,S=1,i=2
滿足條件i<4,執(zhí)行循環(huán)體,S=4,i=3
滿足條件i<4,執(zhí)行循環(huán)體,S=11,i=4
不滿足條件i<4,退出循環(huán),輸出S的值為11.
故選:B.

點(diǎn)評 本題考查了應(yīng)用程序框圖進(jìn)行簡單的計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等差數(shù)列{an}中,a1=1,a6=21,記數(shù)列{$\frac{1}{a_n}$}的前n項(xiàng)和為Sn,若S2n+1-Sn≤$\frac{m}{15}$對n∈N+恒成立,則正整數(shù)m的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知冪函數(shù)y=(m2-m-1)x${\;}^{{m}^{2}-2m-2}$,不過原點(diǎn),則冪函數(shù)為y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩個(gè)具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2)…(xn,yn),且回歸直線方程為$\hat{y}$=a+bx,則最小二乘法的思想是( 。
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示的算法流程圖中,輸出S的值為( 。 
A.32B.42C.52D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個(gè)結(jié)論正確的是( 。
①若p∧q是真命題,則¬p可能是真命題;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要條件;
④當(dāng)α<0時(shí),冪函數(shù)y=xα在區(qū)間(0,+∞)上單調(diào)遞減.
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)z滿足z(1+i)=1(i為虛數(shù)單位),則z=$\frac{1}{2}$-$\frac{1}{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(5-2x)}$的定義域是[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在復(fù)平面內(nèi),復(fù)數(shù)z=(1+i)•(1-2i),則其對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案