4.已知復(fù)數(shù)z滿足z(1+i)=1(i為虛數(shù)單位),則z=$\frac{1}{2}$-$\frac{1}{2}$i.

分析 分母實數(shù)化,求出z即可.

解答 解:∵z(1+i)=1,
∴z=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1}{2}$-$\frac{1}{2}$i
故答案為:$\frac{1}{2}$-$\frac{1}{2}$i.

點評 本題考查了復(fù)數(shù)的運算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),該幾何體的體積是( 。
A.$\frac{10}{3}π$B.C.D.$(6+\sqrt{2}π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下面幾種推理中是演繹推理的選項為( 。
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可以導(dǎo)電
B.猜想數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項公式為an=$\frac{1}{n(n+1)}$(n∈N+
C.由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2
D.半徑為r圓的面積S=πr2,則單位圓的面積S=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.26B.11C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了分析某籃球運動員在比賽中發(fā)揮的穩(wěn)定程度,統(tǒng)計了運動員在8場比賽中的得分,用莖葉圖表示如圖,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為( 。
A.$\frac{{\sqrt{17}}}{2}$B.$\frac{{\sqrt{15}}}{2}$C.$\frac{{\sqrt{19}}}{4}$D.$\frac{{\sqrt{17}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平行四邊形ABCD 中,AC與BD 交于點O,E 是線段 OD的中點,AE的延長線與CD 交于點F.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$( 。
A.$\frac{3}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow$B.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$C.$\frac{1}{4}\overrightarrow{a}$+$\frac{3}{4}\overrightarrow$D.$\frac{2}{3}\overrightarrow{a}$+$\frac{1}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=2x3B.y=|x|+1C.y=-x2+4D.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2x-$\frac{1}{2}$,g(x)=$\frac{{\sqrt{2}}}{4}-\frac{1}{2}$sin2x.
(Ⅰ)求函數(shù)f(x)與g(x)圖象交點的橫坐標(biāo);
(Ⅱ)若函數(shù)φ(x)=$\frac{{\sqrt{2}}}{4}$-f(x)-g(x),將函數(shù)φ(x)圖象上的點縱坐標(biāo)不變,橫坐標(biāo)擴大為原來的4倍,再將所得函數(shù)圖象向右平移$\frac{5π}{6}$個單位,得到函數(shù)h(x),求h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機上網(wǎng)情況,隨機抽取了100名大學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機上網(wǎng)平均所用時間的頻率分布直方圖.將時間不低于40分鐘的學(xué)生稱為“手機迷”.
(1)樣本中“手機迷”有多少人?
非手機迷手機迷合計
301545
451055
合計7525100
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機迷”比“非手機迷”每月的話費平均多40元,記被抽取的3名大學(xué)生中的“手機迷”人數(shù)為X,且設(shè)3人每月的總話費比“非手機迷”共多出Y元,若每次抽取的結(jié)果是相互獨立的,求X的分布列和Y的期望EY.

查看答案和解析>>

同步練習(xí)冊答案