7.已知θ為銳角,且sinθ:cos$\frac{θ}{2}$=8:5,求sinθcosθ

分析 利用二倍角的正弦函數(shù)求出半角的正弦函數(shù),然后求解正弦函數(shù)與余弦函數(shù)值即可.

解答 解:θ為銳角,且sinθ:cos$\frac{θ}{2}$=8:5,
可得sin$\frac{θ}{2}$=$\frac{4}{5}$,cos$\frac{θ}{2}$=$\frac{3}{5}$,
sinθ=2sin$\frac{θ}{2}$cos$\frac{θ}{2}$=$\frac{24}{25}$.
cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{7}{25}$.
sinθcosθ=$\frac{168}{625}$.

點(diǎn)評(píng) 本題考查二倍角的正弦函數(shù)以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知{an}(n=1,2,3,…)是由非負(fù)整數(shù)組成的無(wú)窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為A,第n項(xiàng)之后各項(xiàng)an+1,an+2…的最小值記為Bn,dn=An-Bn
(1)若{an}滿足a1=3,當(dāng)n≥2時(shí),an=3n-1,寫(xiě)出d1,d2,d3的值;
(2)設(shè)d是非負(fù)整數(shù),證明:dn=-d的充分必要條件為{an}是公差為d的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A1,上頂點(diǎn)為B2、右焦點(diǎn)為F2,橢圓C的離心率為$\frac{\sqrt{2}}{2}$,△A1B2F2的面積為$\sqrt{2}$+1.
(1)求橢圓C的方程;
(2)直線1:y=k(x-$\sqrt{2}$),k≠0與橢圓C交于A,B兩點(diǎn),與y軸交于點(diǎn)M,A與C關(guān)于y軸對(duì)稱(chēng),直線BC與y軸交于點(diǎn)N.求證:|0M|•|0N|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知過(guò)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)的直線1與C交于A,B兩點(diǎn),且使|AB|=4a的直線1恰好有3條,則雙曲線C的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,B=$\frac{π}{3}$,AB=2,D為AB中點(diǎn),△BCD的面積為$\frac{3\sqrt{3}}{4}$,則AC等于(  )
A.2B.$\sqrt{7}$C.$\sqrt{10}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}滿足an+1=$\sqrt{{a}_{n}^{2}+4}$,且a1=1,數(shù)列bn=${a}_{n}^{2}$,則{bn}的前n項(xiàng)和Sn=2n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知在數(shù)列{an}中,a1=2,an+1=4an+6,n∈N*
(1)求證:數(shù)列{an+2}為等比數(shù)列;
(2)求數(shù)列{(-1)nnan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$$+λ\overrightarrow{{e}_{2}}$(λ∈R),且|$\overrightarrow{a}$|=$\frac{\sqrt{3}}{2}$,則λ=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$-1C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在三棱錐P-ABC中,$AB=BC=2\sqrt{3}$,平面PAC⊥平面ABC,PD⊥AC于點(diǎn)D,AD=2,CD=4,PD=3.
(1)求三棱錐P-ABC的體積;
(2)證明:△PBC為直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案